该死,这次一定要弄懂什么是时间复杂度和空间复杂度!

开始

首先,相信大家在看一些技术文章或者刷算法题的时候,总是能看到要求某某某程序(算法)的时间复杂度为O(n)或者O(1)等字样,就像这样:

Q:那么到底这个O(n)、O(1)是什么意思呢?

A:时间复杂度空间复杂度其实是对算法执行期间的性能进行衡量的依据。

Talk is cheap, show me the code!

下面从代码入手,来直观的理解一下这两个概念:

时间复杂度

先来看看copilot如何解释的

  • 举个🌰
js 复制代码
function fn (arr) {
    let length = arr.length
    for (let i = 0; i < length; i++) {
        console.log(arr[i])
    }
}

首先来分析一下这段代码,这是一个函数,接收一个数组,然后对这个数组进行了一个遍历

  1. 第一段代码,在函数执行的时候,这段代码只会被执行1次,这里记为 1 次
js 复制代码
let length = arr.length
  1. 循环体中的代码,循环多少次就会执行多少次,这里记为 n 次
js 复制代码
console.log(arr[i])
  1. 循环条件部分,首先是 let i = 0,只会执行一次,记为 1 次

  2. 然后是i < length这个判断,想要退出循环,这里最后肯定要比循环次数多判断一次,所以记为 n + 1 次

  3. 最后是 i++,会执行 n

我们把总的执行次数记为T(n)

js 复制代码
T(n) = 1 + n + 1 (n + 1) + n = 3n + 3
  • 再来一个🌰
js 复制代码
// arr 是一个二维数组
function fn2(arr) {
    let lenOne = arr.length
    for(let i = 0; i < lenOne; i++) {
        let lenTwo = arr[i].length
        for(let j = 0; j < lenTwo; j++) {
            console.log(arr[i][j])
        }
    }
}

来分析一下这段代码,这是一个针对二维数组进行遍历的操作,我们再来分析一下这段代码的执行次数

  1. 第一行赋值代码,只会执行1次
js 复制代码
let lenOne = arr.length
  1. 第一层循环,let i = 0 1次,i < lenOne n + 1 次,i++ n 次,let len_two = arr[i].length n 次

  2. 第二层循环,let j = 0 n 次,j < lenTwo n * (n + 1) 次,j++ n * n 次

  3. console n*n 次

scss 复制代码
T(n) = 1 + n + 1 + n + n + n + n * (n + 1) + n * n + n * n = 3n^2 + 5n + 3

代码的执行次数,可以反映出代码的执行时间。但是如果每次我们都逐行去计算 T(n),事情会变得非常麻烦。算法的时间复杂度,它反映的不是算法的逻辑代码到底被执行了多少次,而是随着输入规模的增大,算法对应的执行总次数的一个变化趋势。我们可以尝试对 T(n) 做如下处理:

  • 若 T(n) 是常数,那么无脑简化为1
  • 若 T(n) 是多项式,比如 3n^2 + 5n + 3,我们只保留次数最高那一项,并且将其常数系数无脑改为1。

那么上面两个算法的时间复杂度可以简化为:

scss 复制代码
T(n) = 3n + 3
O(n) = n

T(n) = 3n^2 + 5n + 3
O(n) = n^2

实际推算时间复杂度时不用这么麻烦,像上面的两个函数,第一个是规模为n的数组的遍历,循环会执行n次,所以对应的时间幅度是O(n),第二个函数是 n*n的二维数组的遍历,对应的时间复杂度就是O(n^2) 依次类推,规模为n*m的二维数组的遍历,时间复杂度就是O(n*m)

常见的时间复杂度按照从小到大的顺序排列,有以下几种:

常数时间 对数时间 线性时间 线性对数时间 二次时间 三次时间 指数时间
O(1) O(logn) O(n) O(nlogn) O(n^2) O(n^3) O(2^n)

空间复杂度

先看看copilot的解释:

  • 来一个🌰看看吧:
js 复制代码
function fn (arr) {
    let length = arr.length
    for (let i = 0; i < length; i++) {
        console.log(arr[i])
    }
}

在函数fn中,我们创建了变量 length arr i,函数 fn 对内存的占用量是固定的,无论,arr的length如何,所以这个函数对应的空间复杂度就是 O(1)

  • 再来一个🌰:
js 复制代码
function fn2(n) {
    let arr = []
    for(let i = 0; i < n; i++) {
        arr[i] = i
    }
}

在这个函数中,我们创建了一个数组 arr,并在循环中向 arr 中添加了 n 个元素。因此,arr 的大小与输入 n 成正比。所以,我们说这个函数的空间复杂度是 O(n)。

  • 再再来一个🌰:
js 复制代码
function createMatrix(n) {
    let matrix = [];
    for (let i = 0; i < n; i++) {
        matrix[i] = [];
        for (let j = 0; j < n; j++) {
            matrix[i][j] = 0;
        }
    }
    return matrix;
}

在这个函数中,我们创建了一个二维数组 matrix,并在两层循环中向 matrix 中添加了 n*n 个元素。因此,matrix 的大小与输入 n 的平方成正比。所以,我们说这个函数的空间复杂度是 O(n^2)。

  • 再再再来一个🌰:
js 复制代码
// 二分查找算法
function binarySearch(arr, target, low, high) {
    if (low > high) {
        return -1;
    }
    let mid = Math.floor((low + high) / 2);
    if (arr[mid] === target) {
        return mid;
    } else if (arr[mid] > target) {
        return binarySearch(arr, target, low, mid - 1);
    } else {
        return binarySearch(arr, target, mid + 1, high);
    }
}

在二分查找中,我们每次都将问题规模减半,因此需要的额外空间与输入数据的对数成正比,我们开始时有一个大小为 n 的数组。然后,我们在每一步都将数组划分为两半,并只在其中一半中继续查找。因此,每一步都将问题的规模减半

所以,最多要划分多少次才能找到目标数据呢?答案是log2n次,但是在计算机科学中,当我们说 log n 时,底数通常默认为 2,因为许多算法(如二分查找)都涉及到将问题规模减半的操作。

ini 复制代码
2^x = n

x = log2n

常见的时间复杂度按照从小到大的顺序排列,有以下几种:

常数空间 线性空间 平方空间 对数空间
O(1) O(n) O(n^2) O(logn)

你学废了吗?

相关推荐
小墨宝26 分钟前
js 生成pdf 并上传文件
前端·javascript·pdf
雾月5535 分钟前
LeetCode 1292 元素和小于等于阈值的正方形的最大边长
java·数据结构·算法·leetcode·职场和发展
HED41 分钟前
用扣子快速手撸人生中第一个AI智能应用!
前端·人工智能
DN金猿1 小时前
使用npm install或cnpm install报错解决
前端·npm·node.js
丘山子1 小时前
一些鲜为人知的 IP 地址怪异写法
前端·后端·tcp/ip
志存高远661 小时前
Kotlin 的 suspend 关键字
前端
www_pp_1 小时前
# 构建词汇表:自然语言处理中的关键步骤
前端·javascript·自然语言处理·easyui
天天扭码2 小时前
总所周知,JavaScript中有很多函数定义方式,如何“因地制宜”?(ˉ﹃ˉ)
前端·javascript·面试
一个专注写代码的程序媛2 小时前
为什么vue的key值,不用index?
前端·javascript·vue.js
장숙혜2 小时前
ElementUi的Dropdown下拉菜单的详细介绍及使用
前端·javascript·vue.js