OpenCV-Python(21):OpenCV中的轮廓性质

3.轮廓的性质

本文我们将主要学习基于轮廓来提取一些经常使用的对象特征。

3.1 长宽比

边界矩形的宽高比:

复制代码
x,y,w,h = cv2.boundingRect(cnt)
aspect_ratio = float(w)/h

3.2 Extent

轮廓面积与边界矩形面积的比。

复制代码
area = cv2.contourArea(cnt)
x,y,w,h = cv2.boundingRect(cnt)
rect_area = w*h
extent = float(area)/rect_area

3.3 Solidity

轮廓面积与凸包面积的比。

复制代码
area = cv2.contourArea(cnt)
hull = cv2.convexHull(cnt)
hull_area = cv2.contourArea(hull)
solidity = float(area)/hull_area

3.4 Equivalent Diameter

与轮廓面积相等的圆形的直径。

复制代码
area = cv2.contourArea(cnt)
equi_diameter = np.sqrt(4*area/np.pi)

3.5 方向

对的方向,下面的方法会返回长轴和短轴的长度。

复制代码
(x,y),(MA,ma),angle = cv2.fitEllipse(cnt)

3.6 掩膜和像素点

有时我们需要构成对象的所有像素点,我们可以这样做:

复制代码
mask = np.zeros(imgray.shape,np.uint8)
# 􄦈􄭻一定􄌰使用参数-1, 绘制填充的的􄤝廓
cv2.drawContours(mask,[cnt],0,255,-1)
#Returns a tuple of arrays, one for each dimension of a,
#containing the indices of the non-zero elements in that dimension.
#The result of this is always a 2-D array, with a row for
#each non-zero element.
#To group the indices by element, rather than dimension, use:
#transpose(nonzero(a))
#>>> x = np.eye(3)
#>>> x
#array([[ 1., 0., 0.],
# [ 0., 1., 0.],
# [ 0., 0., 1.]])
#>>> np.nonzero(x)
#(array([0, 1, 2]), array([0, 1, 2]))
#>>> x[np.nonzero(x)]
#array([ 1., 1., 1.])
#>>> np.transpose(np.nonzero(x))
#array([[0, 0],
# [1, 1],
# [2, 2]])
pixelpoints = np.transpose(np.nonzero(mask))
#pixelpoints = cv2.findNonZero(mask)

这里我们使用了两种方法,第一种方法使用了Numpy 函数,第二种使用了OpenCV 函数。结果相同,但还是有点不同。Numpy 给出的坐标是(row,colum)形式的。而OpenCV 给出的格式是(x,y)形式的。所以两个结果基本是可以互换的。row=x,colunm=y。

3.7 最大值和最小值及位置

我们可以使用掩模图像得到这些参数。

复制代码
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(imgray,mask = mask)

3.8 平均颜色及平均灰度

我们也可以使用相同的掩模求一个对象的平均颜色或平均灰度:

复制代码
mean_val = cv2.mean(im,mask = mask)

3.9 极点

一个对象最上,最下,最左,最右的点。

复制代码
leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])
rightmost = tuple(cnt[cnt[:,:,0].argmax()][0])
topmost = tuple(cnt[cnt[:,:,1].argmin()][0])
bottommost = tuple(cnt[cnt[:,:,1].argmax()][0])

如下图所示:

相关推荐
Techblog of HaoWANG1 小时前
目标检测与跟踪 (8)- 机器人视觉窄带线激光缝隙检测系统开发
人工智能·opencv·目标检测·机器人·视觉检测·控制
编码小哥3 小时前
OpenCV图像滤波技术详解:从均值滤波到双边滤波
人工智能·opencv·均值算法
格林威5 小时前
Baumer相机金属焊缝缺陷识别:提升焊接质量检测可靠性的 7 个关键技术,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·计算机视觉·视觉检测·堡盟相机
困死,根本不会5 小时前
OpenCV摄像头实时处理:基于 HSV 颜色空间的摄像头实时颜色筛选工具
人工智能·opencv·计算机视觉
Sagittarius_A*6 小时前
角点检测:Harris 与 Shi-Tomasi原理拆解【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉
困死,根本不会6 小时前
OpenCV实时摄像头处理:曝光调节、降噪与二值化实战
人工智能·opencv·计算机视觉
Sagittarius_A*7 小时前
形态学与多尺度处理:计算机视觉中图像形状与尺度的基础处理框架【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉
茶栀(*´I`*)7 小时前
【OpenCV 视觉全栈进阶】核心特征提取:模板匹配与霍夫变换(线/圆检测)深度技术指南
图像处理·opencv·计算机视觉
格林威9 小时前
Baumer相机金属弹簧圈数自动计数:用于来料快速检验的 6 个核心算法,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·计算机视觉·视觉检测·堡盟相机