为什么在使用onnxruntime-gpu下却没有成功调用GPU?

20240105,记。
最近在使用GPU对onnx模型进行加速过程中(仅针对N卡,毕竟也没有别的显卡了。。),遇到了点问题:就是明明在安装了合适版本的显卡驱动和CUDA后,onnx还是不能够成功调用GPU,并且还出现了先导入torch,再导入onnxruntime就可以成功调用的奇怪现象。

测试机器:Windows10,RTX 3070,onnxruntime-gpu==1.16.1,显卡驱动:522,CUDA11.8

问题展示:

python 复制代码
onnxruntime.InferenceSession(ckpt, providers=['CUDAExecutionProvider'])
basg 复制代码
2024-01-05 10:44:22.7798928 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:743 onnxruntime::python::CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.

在onnxruntime版本与CUDA等版本均对应,但却出现上面的警告信息,且没有查看到GPU调用。

下意识的会考虑是不是onnxruntime压根没找到GPU,所以尝试了下面的代码:

python 复制代码
import onnxruntime
onnxruntime.get_device() # 得到的输出结果是GPU,所以按理说是找到了GPU的

解决之路:

自然是找issue是找官方仓库的issue是最靠谱的了,参考链接:https://github.com/microsoft/onnxruntime/issues/11092

看完后真的给了我一种顿悟感,而且竟然还与torch莫名地产生了联系,一开始有大佬给出的解决方法是先import torchimport onnxruntime,但这个方法就很奇怪,我使用了onnx,自然是不想再引入torch这个包,而且torch还很大,没有解决根本问题。

之后有一个佬给出的回答才让我明白过来:

我去查看了自己的torch的lib目录,发现下面确实有cudnn相关的动态链接库,但是去cuda的目录下(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8),却并没有发现相关的库,也就是说,平常我们安装好cuda就可以用torch了,是因为torch自带了cudnn,即使我们没有安装cudnn,也能够去使用(cuda属于是框架,cudnn是属于软件层面的加速库)。

但onnxruntime不一样,它并没有自带cudnn,所以是需要自己去加cudnn添加进cuda的对应目录下的,具体可参考cudnn的安装教程,还有官方教程写的也是比较清晰的:Installation Guide - NVIDIA Docs

主要是解压下载的压缩包,复制cudnn的文件到cuda目录,以及添加环境变量,不过之前安装CUDA的时候应该已经默认添加过环境变量了。

完成这一步后,重新尝试了执行onnx推理,但却碰到了另一个问题:

Could not locate zlibwapi.dll. Please make sure it is in your library path!

重新查找后,根据 解决Could not locate zlibwapi.dll. Please make sure it is in your library path! - 知乎 (zhihu.com) 给出的回答,NVIDIA官网已不再提供zlibwapi.dll的下载 ,重新去换了最新版本的cuDNN ,目前每个版本又分为与cuda对应的11.x和12.x的版本。版本对应可参考:Support Matrix - NVIDIA Docs

至此就解决了我碰到的onnxruntime无法在GPU推理的问题,关键点还是在于按照以往torch使用的思路,以为安装了驱动和CUDA就可以了(或者说下意识以为cuDNN就已经一起安装好了,但其实并没有),但还需要添加cuDNN库,因为torch自带了,而onnxruntime没有自带

相关推荐
肖永威15 分钟前
CentOS环境上离线安装python3及相关包
linux·运维·机器学习·centos
IT古董3 小时前
【人工智能】Python在机器学习与人工智能中的应用
开发语言·人工智能·python·机器学习
机器人虎哥4 小时前
【8210A-TX2】Ubuntu18.04 + ROS_ Melodic + TM-16多线激光 雷达评测
人工智能·机器学习
罗小罗同学6 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤6 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
羊小猪~~6 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
不去幼儿园8 小时前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
无脑敲代码,bug漫天飞9 小时前
COR 损失函数
人工智能·机器学习
HPC_fac1305206781610 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
老艾的AI世界18 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲