直方图与均衡化

直方图

统计图像中相同像素点的数量。

使用cv2.calcHist(images, channels, mask, histSize, ranges)函数

images :原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。
channels :同样用中括号括起来,告诉我们统幅图像的直方图,如果图像是灰度图就是[0],如果是彩色图可以是[0],[1],[2],分别对应BGR。
mask :掩膜图像,统幅图像使用None,若使用一部分需要自行制作。
histSize :BIN的数目,也要中括号。
ranges:像素值范围一般为[0,256]

灰度图

python 复制代码
img = cv2.imread('deppb.jpg', 0)
show.cv_show('img', img)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
h1 = hist.shape
plt.hist(img.ravel(), 256)
plt.show()

灰度图

直方图

彩色图

python 复制代码
img2 = cv2.imread('deppb.jpg')
show.cv_show('img2', img2)
color = ('b', 'g', 'r')
for i, col in enumerate(color):
    histr = cv2.calcHist([img2], [i], None, [256], [0, 256])
    plt.plot(histr, color=col)
    plt.xlim([0, 256])
plt.show()

彩色图

直方图

图为三通道的直方图

mask操作

mask,在指定区域置为255,其余区域置为0,与原图相与,最后得到指定区域的像素点个数统计,绘制直方图。

python 复制代码
# 创建mask
show.cv_show('img2', img2)  # 原图
mask = np.zeros(img2.shape[:2], np.uint8)
print(mask.shape)
mask[200: 600, 100: 427] = 255
show.cv_show('mask', mask)  # mask图

masked_img2 = cv2.bitwise_and(img2, img2, mask=mask)
show.cv_show('masked_img2', masked_img2)  # 原图与mask

hist_full = cv2.calcHist([img2], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img2], [0], mask, [256], [0, 256])
plt.plot(hist_full), plt.plot(hist_mask)  # [0]通道直方图对比
plt.show()

mask图

mask与原图相与

0\]通道直方图对比 ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/2b443fdde3930b4ae290828f59d55b36.webp) 蓝色为整体直方图,橙色为特定区域直方图。 ## 均衡化 将一副图像的直方图分布通过累积分布函数变成近似均匀分布,从而增强图像的对比度。 ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/eb34968e864a595de3d40ed7ab40dc1f.webp) 根据像素点个数得到概率值,再算出累积概率类似于分布函数,再由累积概率映射出新的像素值,最后取整。 ```python img3 = cv2.imread('deppb.jpg', 0) plt.hist(img3.ravel(), 256) # 原图直方图 plt.show() equ = cv2.equalizeHist(img3) plt.hist(equ.ravel(), 256) # 均衡化后直方图 plt.show() res = np.hstack((img3, equ)) show.cv_show('res', res) # 图像对比 ``` ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/3525ad9d491bf13c9de2e5c543e6d7c7.webp) ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/4b4a46f9f2110c3880b574921d687f08.webp) ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/7383c98670befdd112b9273bf9061102.webp) 可以看到整体均衡化可能导致部分信息丢失。 ## 自适应均衡化 其实是分区域进行均衡化,减少信息丢失。 ```python clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) # 方法 res_clahe = clahe.apply(img3) plt.hist(res_clahe.ravel(), 256) # 自适应均衡化后直方图 plt.show() res = np.hstack((img3, equ, res_clahe)) # 与原图和整体均衡化对比 show.cv_show('res', res) ``` 自适应均衡化的直方图 ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/4d0d313192a78aa5a914659bb3bbdf5a.webp) 对比图 ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/670e723eebf9fd580f758e74d71d5ad4.webp) 可以看到对比度加强而且信息丢失得到改善。

相关推荐
子燕若水2 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室3 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿3 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫3 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手3 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记3 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元4 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术4 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
彭祥.4 小时前
Jetson边缘计算主板:Ubuntu 环境配置 CUDA 与 cudNN 推理环境 + OpenCV 与 C++ 进行目标分类
c++·opencv·分类