直方图与均衡化

直方图

统计图像中相同像素点的数量。

使用cv2.calcHist(images, channels, mask, histSize, ranges)函数

images :原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。
channels :同样用中括号括起来,告诉我们统幅图像的直方图,如果图像是灰度图就是[0],如果是彩色图可以是[0],[1],[2],分别对应BGR。
mask :掩膜图像,统幅图像使用None,若使用一部分需要自行制作。
histSize :BIN的数目,也要中括号。
ranges:像素值范围一般为[0,256]

灰度图

python 复制代码
img = cv2.imread('deppb.jpg', 0)
show.cv_show('img', img)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
h1 = hist.shape
plt.hist(img.ravel(), 256)
plt.show()

灰度图

直方图

彩色图

python 复制代码
img2 = cv2.imread('deppb.jpg')
show.cv_show('img2', img2)
color = ('b', 'g', 'r')
for i, col in enumerate(color):
    histr = cv2.calcHist([img2], [i], None, [256], [0, 256])
    plt.plot(histr, color=col)
    plt.xlim([0, 256])
plt.show()

彩色图

直方图

图为三通道的直方图

mask操作

mask,在指定区域置为255,其余区域置为0,与原图相与,最后得到指定区域的像素点个数统计,绘制直方图。

python 复制代码
# 创建mask
show.cv_show('img2', img2)  # 原图
mask = np.zeros(img2.shape[:2], np.uint8)
print(mask.shape)
mask[200: 600, 100: 427] = 255
show.cv_show('mask', mask)  # mask图

masked_img2 = cv2.bitwise_and(img2, img2, mask=mask)
show.cv_show('masked_img2', masked_img2)  # 原图与mask

hist_full = cv2.calcHist([img2], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img2], [0], mask, [256], [0, 256])
plt.plot(hist_full), plt.plot(hist_mask)  # [0]通道直方图对比
plt.show()

mask图

mask与原图相与

0\]通道直方图对比 ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/2b443fdde3930b4ae290828f59d55b36.webp) 蓝色为整体直方图,橙色为特定区域直方图。 ## 均衡化 将一副图像的直方图分布通过累积分布函数变成近似均匀分布,从而增强图像的对比度。 ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/eb34968e864a595de3d40ed7ab40dc1f.webp) 根据像素点个数得到概率值,再算出累积概率类似于分布函数,再由累积概率映射出新的像素值,最后取整。 ```python img3 = cv2.imread('deppb.jpg', 0) plt.hist(img3.ravel(), 256) # 原图直方图 plt.show() equ = cv2.equalizeHist(img3) plt.hist(equ.ravel(), 256) # 均衡化后直方图 plt.show() res = np.hstack((img3, equ)) show.cv_show('res', res) # 图像对比 ``` ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/3525ad9d491bf13c9de2e5c543e6d7c7.webp) ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/4b4a46f9f2110c3880b574921d687f08.webp) ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/7383c98670befdd112b9273bf9061102.webp) 可以看到整体均衡化可能导致部分信息丢失。 ## 自适应均衡化 其实是分区域进行均衡化,减少信息丢失。 ```python clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) # 方法 res_clahe = clahe.apply(img3) plt.hist(res_clahe.ravel(), 256) # 自适应均衡化后直方图 plt.show() res = np.hstack((img3, equ, res_clahe)) # 与原图和整体均衡化对比 show.cv_show('res', res) ``` 自适应均衡化的直方图 ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/4d0d313192a78aa5a914659bb3bbdf5a.webp) 对比图 ![在这里插入图片描述](https://file.jishuzhan.net/article/1743378905189847042/670e723eebf9fd580f758e74d71d5ad4.webp) 可以看到对比度加强而且信息丢失得到改善。

相关推荐
小菜AI科技6 分钟前
Windsurf 评测:这款 人工智能 IDE 是你需要的颠覆性工具吗?
人工智能
RaymondZhao349 分钟前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
yzx99101333 分钟前
小程序开发APP
开发语言·人工智能·python·yolo
AKAMAI1 小时前
通过自动化本地计算磁盘与块存储卷加密保护数据安全
人工智能·云计算
飞翔的佩奇1 小时前
【完整源码+数据集+部署教程】二维码与查找模式检测系统源码和数据集:改进yolo11-CSwinTransformer
python·yolo·计算机视觉·数据集·yolo11·二维码与查找模式检测
无规则ai1 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
zskj_zhyl2 小时前
家庭健康能量站:微高压氧舱结合艾灸机器人,智享双重养生SPA
人工智能·科技·安全·机器人
朗迪锋2 小时前
数字孪生 :提高制造生产力的智能方法
大数据·人工智能·制造
网安INF2 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
qq_526099132 小时前
图像采集卡与工业相机:机器视觉“双剑合璧”的效能解析
图像处理·数码相机·计算机视觉