神经网络-卷积层

卷积

输入通道数, 输出通道数,核大小

参数具体含义

直观理解各个参数的网站(gif)

python 复制代码
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

大概长这样,cyan是青色的意思

channel数(终于理解论文里图片放好多层的原因了)

查看网络结构可以直接print

python 复制代码
dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
    def forward(self, x):
        x = self.conv1(x)
        return x
tudui = Tudui()
print(tudui)

注意kernel_size是(3, 3),而不是3

想自己算出输出图像的大小,可以按照下面公式进行计算

python 复制代码
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

完整流程

python 复制代码
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
    def forward(self, x):
        x = self.conv1(x)
        return x

tudui = Tudui()

writer = SummaryWriter('./logs') # ../logs是放在上级目录
step = 0
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    # print(imgs.shape)
    # print(output.shape)
    # torch.Size([64, 3, 32, 32])
    writer.add_images('input', imgs, global_step=step) # 注意是add_images
    # torch.Size([64, 6, 30, 30]) -> [xxx, 3, 30, 30]
    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images('output', output, global_step=step)
    step += 1
writer.close()

至于为什么最后显示的不一样,是因为kernel是随机生成的,并未设置

相关推荐
乾元4 分钟前
AI 在网络工程中的 12 个高频场景深度实战(Cisco / Huawei 双体系)
人工智能
子午1 小时前
【食物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Dev7z1 小时前
基于深度学习和图像处理的药丸计数与分类系统研究
图像处理·人工智能·深度学习
Mxsoft6191 小时前
某次联邦学习训练模型不准,发现协议转换字段映射错,手动校验救场!
人工智能
shayudiandian2 小时前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花2 小时前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午2 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
模型启动机2 小时前
Langchain正式宣布,Deep Agents全面支持Skills,通用AI代理的新范式?
人工智能·ai·langchain·大模型·agentic ai
Python私教2 小时前
别让 API Key 裸奔:基于 TRAE SOLO 的大模型安全配置最佳实践
人工智能
Python私教2 小时前
Vibe Coding 体验报告:我让 TRAE SOLO 替我重构了 2000 行屎山代码,结果...
人工智能