神经网络-卷积层

卷积

输入通道数, 输出通道数,核大小

参数具体含义

直观理解各个参数的网站(gif)

python 复制代码
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

大概长这样,cyan是青色的意思

channel数(终于理解论文里图片放好多层的原因了)

查看网络结构可以直接print

python 复制代码
dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
    def forward(self, x):
        x = self.conv1(x)
        return x
tudui = Tudui()
print(tudui)

注意kernel_size是(3, 3),而不是3

想自己算出输出图像的大小,可以按照下面公式进行计算

python 复制代码
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

完整流程

python 复制代码
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
    def forward(self, x):
        x = self.conv1(x)
        return x

tudui = Tudui()

writer = SummaryWriter('./logs') # ../logs是放在上级目录
step = 0
for data in dataloader:
    imgs, targets = data
    output = tudui(imgs)
    # print(imgs.shape)
    # print(output.shape)
    # torch.Size([64, 3, 32, 32])
    writer.add_images('input', imgs, global_step=step) # 注意是add_images
    # torch.Size([64, 6, 30, 30]) -> [xxx, 3, 30, 30]
    output = torch.reshape(output, (-1, 3, 30, 30))
    writer.add_images('output', output, global_step=step)
    step += 1
writer.close()

至于为什么最后显示的不一样,是因为kernel是随机生成的,并未设置

相关推荐
机器之心36 分钟前
高阶程序,让AI从技术可行到商业可信的最后一公里
人工智能·openai
martinzh40 分钟前
解锁RAG高阶密码:自适应、多模态、个性化技术深度剖析
人工智能
机器之心44 分钟前
刚刚,李飞飞空间智能新成果震撼问世!3D世界生成进入「无限探索」时代
人工智能·openai
scilwb1 小时前
Isaac Sim机械臂教程 - 阶段1:基础环境搭建与机械臂加载
人工智能·开源
舒一笑1 小时前
TorchV企业级AI知识引擎的三大功能支柱:从构建到运营的技术解析
人工智能
掘金酱1 小时前
🎉 2025年8月金石计划开奖公示
前端·人工智能·后端
鹏多多2 小时前
纯前端人脸识别利器:face-api.js手把手深入解析教学
前端·javascript·人工智能
aneasystone本尊2 小时前
盘点 Chat2Graph 中的专家和工具
人工智能
Baihai_IDP3 小时前
AI Agents 能自己开发工具自己使用吗?一项智能体自迭代能力研究
人工智能·面试·llm
大模型真好玩4 小时前
大模型工程面试经典(七)—如何评估大模型微调效果?
人工智能·面试·deepseek