【数值分析】非线性方程求根,二分法,割线法,matlab实现

1. 基本问题

收敛阶
lim ⁡ k → ∞ ∣ e k + 1 ∣ ∣ e k ∣ r = C > 0    ,    r 为收敛阶 \lim_{k\to\infty} \frac{|e_{k+1}|}{|e_k|}^r=C>0 \,\,,\,\, r为收敛阶 k→∞lim∣ek∣∣ek+1∣r=C>0,r为收敛阶

2. 二分法

二分法是线性收敛的,如果指定精度 ϵ { \epsilon } ϵ ,则最多需要迭代步数
k = ⌈ log ⁡ 2 ( b − a ϵ ) ⌉ k= \lceil \log_2(\frac{b-a}{\epsilon }) \rceil k=⌈log2(ϵb−a)⌉

matlab实现

matlab 复制代码
%% 二分法例子
f = @(x) x^3-x-1;
format long
[x,i] = bisect(f,1,2,1e-5,1000)

%% 二分法求非线性方程的根
% 输入函数,范围,精度,最大迭代次数
% 输出根,迭代次数
function [x,i] = bisect(f,a,b,eps,max_iter)
    if sign(f(a))~=sign(f(b))
        for i = 1:max_iter  
            c = a/2+b/2;
            if (b-a)<eps || abs(f(c))<eps
                x = c;
                break
            end
            if sign(f(a))==sign(f(c))
                a = c;
            else
                b = c;
            end
        end
    end
end

3. 不动点迭代加速

不动点 x = x ∗ {x=x ^{*} } x=x∗
x k + 1 = ϕ ( x k ) x_{k+1}=\phi(x_k) xk+1=ϕ(xk)
x k + 1 − x ∗ = ϕ ( x k ) − ϕ ( x ∗ ) = ϕ ′ ( ξ k ) ( x k − x ∗ )    ,    ξ k ∈ ( x k , x ∗ ) x_{k+1}-x ^{*} =\phi(x_k)-\phi(x ^{*} )=\phi'(\xi_k)(x_k-x ^{*} ) \,\,,\,\, \xi_k\in(x_k,x ^{*} ) xk+1−x∗=ϕ(xk)−ϕ(x∗)=ϕ′(ξk)(xk−x∗),ξk∈(xk,x∗)
let     ϕ ′ ( ξ k ) = L \text{let} \,\,\, \phi'(\xi_k) =L letϕ′(ξk)=L
x ∗ ≈ x k + 1 − L x k 1 − L = ϕ ˉ ( x ) x ^{*} \approx \frac{x_{k+1}-Lx_k}{1-L}=\bar\phi(x) x∗≈1−Lxk+1−Lxk=ϕˉ(x)

为加速后的不动点迭代格式。

6. 割线法

割线法比起牛顿迭代法不需要计算导数。
双点割线法

需要知道两个的函数初始值,不需要函数值异号 。迭代公式如下:
x k + 1 = x k − f ( x k ) x k − x k − 1 f ( x k ) − f ( x k − 1 ) x_{k+1}=x_k-f(x_k) \frac{x_k-x_{k-1}}{f(x_k)-f(x_{k-1})} xk+1=xk−f(xk)f(xk)−f(xk−1)xk−xk−1

收敛阶:
r = 5 + 1 2 ≈ 1.618 r= \frac{\sqrt{5}+1}{2} \approx 1.618 r=25 +1≈1.618

matlab编程实现

matlab 复制代码
%%  割线法例子
f = @(x) x-sin(x)-0.5;
[x,e,i] = cutSolve(f,1.4, 1.6, 0.01, 100)

%% 双点割线法
% 输入函数,根所在的区间下限上限,精度,最大迭代次数
% 输出根,根的值,迭代次数
function [x,e,i] = cutSolve(f,a,b,eps,max_iter)
    x0 = a;
    x1 = b;
    for i = 1:max_iter
        x = -f(x0)*(x1-x0)/(f(x1)-f(x0))+x0
        if abs(x-x1)<=eps
            e = abs(f(x));
            break;
        end
        x0=x1;
        x1=x;
    end
end

单点割线法

固定初始点,有
x k + 1 = x k − f ( x k ) x k − x 0 f ( x k ) − f ( x 0 ) x_{k+1}=x_k-f(x_k) \frac{x_k-x_{0}}{f(x_k)-f(x_{0})} xk+1=xk−f(xk)f(xk)−f(x0)xk−x0

算是一种不动点迭代。

相关推荐
东荷新绿1 天前
MATLAB 2018a 安装教程:30分钟搞定安装
开发语言·matlab·matlab2018a
jllllyuz2 天前
Matlab实现基于Matrix Pencil算法实现声源信号角度和时间估计
开发语言·算法·matlab
Dev7z2 天前
基于Matlab传统图像处理的风景图像多风格转换与优化
图像处理·matlab·风景
t198751283 天前
基于MATLAB的指纹识别系统完整实现
开发语言·matlab
gihigo19983 天前
基于MATLAB的IEEE 14节点系统牛顿-拉夫逊潮流算法实现
开发语言·算法·matlab
云纳星辰怀自在3 天前
MATLAB: m脚本-fixdt数据类型数据范围
matlab·m脚本·fixdt
一叶知秋h3 天前
matlab实现PID参数功能的简单仿真_gif
matlab·gif·pid
技术净胜3 天前
MATLAB 基因表达数据处理与可视化全流程案例
开发语言·matlab
机器学习之心4 天前
SSA-SVMD麻雀算法优化逐次变分模态分解(15种不同的适应度)MATLAB代码
matlab·ssa-svmd·麻雀算法优化逐次变分模态分解
三维空间4 天前
在MATLAB中对基因表达数据进行数据预处理
matlab