首次引入大模型!Bert-vits2-Extra中文特化版40秒素材复刻巫师3叶奈法

Bert-vits2项目又更新了,更新了一个新的分支:中文特化,所谓中文特化,即针对中文音色的特殊优化版本,纯中文底模效果百尺竿头更进一步,同时首次引入了大模型,使用国产IDEA-CCNL/Erlangshen-MegatronBert-1.3B大模型作为Bert特征提取,基本上完全解决了发音的bad case,同时在情感表达方面有大幅提升,可以作为先前V1.0.1纯中文版本更好的替代。

更多情报请参见Bert-vits2项目官网:

ruby 复制代码
https://github.com/fishaudio/Bert-VITS2/releases/tag/Extra

本次我们基于Bert-vits2中文特化版本通过40秒素材复刻巫师3角色叶奈法(Yennefer)的音色。

配置Bert-vits2中文特化版本

首先克隆项目:

bash 复制代码
git clone https://github.com/v3ucn/Bert-VITS2-Extra_-.git

注意这里是针对官方的Extra分支的修改版本,增加了音频切分和转写。

随后下载新的纯中文底模:

bash 复制代码
https://openi.pcl.ac.cn/Stardust_minus/Bert-VITS2/modelmanage/show_model

同时还需要下载IDEA-CCNL/Erlangshen-MegatronBert-1.3B大模型的预训练模型:

值得一提的是,这个新炼的纯中文底模非常牛逼,官方作者仅通过一个5秒的素材就可以完美复刻音色。

关于作者的中文特化底模极限测试:

ruby 复制代码
https://www.bilibili.com/video/BV1Fa4y1B7HB/

随后将模型放入对应的文件夹,bert模型文件结构如下:

arduino 复制代码
E:\work\Bert-VITS2-Extra\bert>tree /f  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  
│   bert_models.json  
│  
├───bert-base-japanese-v3  
│       .gitattributes  
│       config.json  
│       README.md  
│       tokenizer_config.json  
│       vocab.txt  
│  
├───bert-large-japanese-v2  
│       .gitattributes  
│       config.json  
│       README.md  
│       tokenizer_config.json  
│       vocab.txt  
│  
├───chinese-roberta-wwm-ext-large  
│       .gitattributes  
│       added_tokens.json  
│       config.json  
│       pytorch_model.bin  
│       README.md  
│       special_tokens_map.json  
│       tokenizer.json  
│       tokenizer_config.json  
│       vocab.txt  
│  
├───deberta-v2-large-japanese  
│       .gitattributes  
│       config.json  
│       pytorch_model.bin  
│       README.md  
│       special_tokens_map.json  
│       tokenizer.json  
│       tokenizer_config.json  
│  
├───deberta-v2-large-japanese-char-wwm  
│       .gitattributes  
│       config.json  
│       pytorch_model.bin  
│       README.md  
│       special_tokens_map.json  
│       tokenizer_config.json  
│       vocab.txt  
│  
├───deberta-v3-large  
│       .gitattributes  
│       config.json  
│       generator_config.json  
│       pytorch_model.bin  
│       README.md  
│       spm.model  
│       tokenizer_config.json  
│  
├───Erlangshen-DeBERTa-v2-710M-Chinese  
│       config.json  
│       special_tokens_map.json  
│       tokenizer_config.json  
│       vocab.txt  
│  
├───Erlangshen-MegatronBert-1.3B-Chinese  
│       config.json  
│       pytorch_model.bin  
│       vocab.txt  
│  
└───Erlangshen-MegatronBert-3.9B-Chinese  
        config.json  
        special_tokens_map.json  
        tokenizer_config.json  
        vocab.txt

很明显,这里关于Erlangshen-MegatronBert大模型,其实有三个参数选择,有710m和1.3b以及3.9B,作者选择了居中的1.3b大模型。

这里介绍一下国产的Erlangshen-MegatronBert大模型。

Erlangshen-MegatronBert 是一个具有 39 亿参数的中文 BERT 模型,它是目前最大的中文 BERT 模型之一。这个模型的编码器结构为主,专注于解决各种自然语言理解任务。它同时,鉴于中文语法和大规模训练的难度,使用了四种预训练策略来改进 BERT,Erlangshen-MegatronBert 模型适用于各种自然语言理解任务,包括文本生成、文本分类、问答等,这个模型的权重和代码都是开源的,可以在 Hugging Face 和 CSDN 博客等平台上找到。

Erlangshen-MegatronBert 模型可以应用于多种领域,如 AI 模拟声音、数字人虚拟主播等。

另外需要注意的是,clap模型也已经回归,结构如下:

vbnet 复制代码
E:\work\Bert-VITS2-Extra\emotional\clap-htsat-fused>tree /f  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  
    .gitattributes  
    config.json  
    merges.txt  
    preprocessor_config.json  
    pytorch_model.bin  
    README.md  
    special_tokens_map.json  
    tokenizer.json  
    tokenizer_config.json  
    vocab.json  
  
No subfolders exist

clap主要负责情感风格的引导。2.3版本去掉了,中文特化又加了回来。

至此模型就配置好了。

Bert-vits2中文特化版本训练和推理

首先把叶奈法的音频素材放入角色的raw目录。

随后需要对数据进行预处理操作:

python3 audio_slicer.py  
python3 short_audio_transcribe.py

这里是切分和转写。

接着运行预处理的webui:

python3 webui_preprocess.py

这里需要注意的是,bert特征文件的生成会变慢,因为需要大模型的参与。

后续应该会有一些改进。

数据处理之后,应该包括重采样音频,bert特征文件,以及clap特征文件:

vbnet 复制代码
E:\work\Bert-VITS2-Extra\Data\Yennefer\wavs>tree /f  
Folder PATH listing for volume myssd  
Volume serial number is 7CE3-15AE  
E:.  
    Yennefer_0.bert.pt  
    Yennefer_0.emo.pt  
    Yennefer_0.spec.pt  
    Yennefer_0.wav  
    Yennefer_1.bert.pt  
    Yennefer_1.emo.pt  
    Yennefer_1.spec.pt  
    Yennefer_1.wav  
    Yennefer_10.bert.pt  
    Yennefer_10.emo.pt  
    Yennefer_10.spec.pt  
    Yennefer_10.wav  
    Yennefer_11.bert.pt  
    Yennefer_11.emo.pt  
    Yennefer_11.spec.pt  
    Yennefer_11.wav  
    Yennefer_12.bert.pt  
    Yennefer_12.emo.pt  
    Yennefer_12.spec.pt  
    Yennefer_12.wav  
    Yennefer_13.bert.pt  
    Yennefer_13.emo.pt  
    Yennefer_13.spec.pt  
    Yennefer_13.wav  
    Yennefer_14.bert.pt  
    Yennefer_14.emo.pt  
    Yennefer_14.spec.pt  
    Yennefer_14.wav  
    Yennefer_15.bert.pt  
    Yennefer_15.emo.pt  
    Yennefer_15.spec.pt  
    Yennefer_15.wav  
    Yennefer_16.bert.pt  
    Yennefer_16.emo.pt  
    Yennefer_16.spec.pt  
    Yennefer_16.wav  
    Yennefer_17.bert.pt  
    Yennefer_17.emo.pt  
    Yennefer_17.spec.pt  
    Yennefer_17.wav  
    Yennefer_18.bert.pt  
    Yennefer_18.emo.pt  
    Yennefer_18.spec.pt  
    Yennefer_18.wav  
    Yennefer_19.bert.pt  
    Yennefer_19.emo.pt  
    Yennefer_19.spec.pt  
    Yennefer_19.wav  
    Yennefer_2.bert.pt  
    Yennefer_2.emo.pt  
    Yennefer_2.spec.pt  
    Yennefer_2.wav  
    Yennefer_20.bert.pt  
    Yennefer_20.emo.pt  
    Yennefer_20.spec.pt  
    Yennefer_20.wav  
    Yennefer_3.bert.pt  
    Yennefer_3.emo.pt  
    Yennefer_3.spec.pt  
    Yennefer_3.wav  
    Yennefer_4.bert.pt  
    Yennefer_4.emo.pt  
    Yennefer_4.spec.pt  
    Yennefer_4.wav  
    Yennefer_5.bert.pt  
    Yennefer_5.emo.pt  
    Yennefer_5.spec.pt  
    Yennefer_5.wav  
    Yennefer_6.bert.pt  
    Yennefer_6.emo.pt  
    Yennefer_6.spec.pt  
    Yennefer_6.wav  
    Yennefer_7.bert.pt  
    Yennefer_7.emo.pt  
    Yennefer_7.spec.pt  
    Yennefer_7.wav  
    Yennefer_8.bert.pt  
    Yennefer_8.emo.pt  
    Yennefer_8.spec.pt  
    Yennefer_8.wav  
    Yennefer_9.bert.pt  
    Yennefer_9.emo.pt  
    Yennefer_9.spec.pt  
    Yennefer_9.wav

随后训练即可:

python3 train_ms.py

结语

Bert-vits2中文特化版本引入了大模型,导致入门的门槛略微变高了一点,官方说至少需要8G显存才可以跑,实际上6G也是可以的,如果bert大模型选择参数更少的版本,相信运行的门槛会进一步的降低。

最后奉上整合包链接:

arduino 复制代码
整合包链接:https://pan.quark.cn/s/754f236ef864
相关推荐
正义的彬彬侠6 分钟前
CatBoost 中对分类特征进行目标变量统计编码 公式解析
人工智能·机器学习·集成学习·boosting·catboost
字节跳动数据平台10 分钟前
火山引擎 VeDI 平台以 AIGC 技术,助力企业提效营销、快速增长
人工智能
赛丽曼12 分钟前
Python中的TCP
python
小白~小黑13 分钟前
软件测试基础二十(接口测试 Postman)
python·自动化·postman
codists14 分钟前
《Django 5 By Example》阅读笔记:p76-p104
python·django·编程人
欧阳枫落22 分钟前
python 2小时学会八股文-数据结构
开发语言·数据结构·python
Chef_Chen25 分钟前
从0开始学习机器学习--Day22--优化总结以及误差作业(上)
人工智能·学习·机器学习
天天要nx26 分钟前
D64【python 接口自动化学习】- python基础之数据库
数据库·python
Mr.简锋30 分钟前
opencv常用api
人工智能·opencv·计算机视觉
DevinLGT1 小时前
6Pin Type-C Pin脚定义:【图文讲解】
人工智能·单片机·嵌入式硬件