什么是神经网络?

神经网络是一种受到人脑结构启发的计算模型,用于机器学习和人工智能任务。它由神经元(或称为节点)组成,这些神经元以层次结构排列,形成输入层、隐藏层和输出层。以下是神经网络的基本原理:

1、神经元: 神经元是神经网络的基本单元,模拟生物神经元的功能。每个神经元接收来自前一层的多个输入,对这些输入进行加权求和,然后通过激活函数产生输出。

2、层次结构: 神经网络通常由多个层次组成,包括输入层、隐藏层和输出层。输入层接收外部输入,隐藏层对输入进行处理,输出层产生最终的输出。

3、权重和偏差: 神经元之间的连接由权重表示,这些权重决定了输入的重要性。每个神经元还有一个偏差(bias),用于调整神经元的激活阈值。

4、激活函数: 激活函数决定神经元是否激活(输出非零值)。常用的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和TanH等,用于引入非线性关系,提高网络的表达能力。

5、前向传播: 通过网络的前向传播,输入从输入层传递到输出层,每一层都对输入进行处理并传递到下一层。

6、损失函数: 损失函数用于衡量模型的输出与实际值之间的差异。训练神经网络的目标是最小化损失函数,通常使用梯度下降等优化算法进行权重和偏差的调整。

7、反向传播: 反向传播是通过损失函数梯度下降来更新神经网络的权重和偏差的过程。它通过链式法则从输出层向输入层逐层计算梯度,并更新参数。

8、训练与学习: 通过提供带有标签的训练数据,神经网络通过反向传播学习权重和偏差,使其能够对未标记的数据做出预测。

神经网络的强大之处在于它能够自动学习特征和模式,适用于各种任务,如图像识别、语音识别、自然语言处理等。

相关推荐
逻极9 分钟前
云智融合:AIGC与云计算服务新范式(深度解析)
人工智能·云计算·aigc·云服务
雪兽软件1 小时前
人工智能(AI)的商业模式创新路线图
人工智能
俊哥V1 小时前
AI一周事件(2025年11月12日-11月18日)
人工智能·ai
算法与编程之美1 小时前
提升minist的准确率并探索分类指标Precision,Recall,F1-Score和Accuracy
人工智能·算法·机器学习·分类·数据挖掘
拓端研究室1 小时前
专题:2025年全球机器人产业发展白皮书-具身智能时代的技术突破|附39份报告PDF、数据、可视化模板汇总下载
人工智能
金智维科技官方1 小时前
政务自动化中,智能体如何实现流程智能审批?
人工智能·自动化·政务·智能体
xiaoginshuo2 小时前
智能体与RPA流程自动化:从工作流搭建看本质区别
人工智能·自动化·rpa
大雷神2 小时前
HarmonyOS 横竖屏切换与响应式布局实战指南
python·深度学习·harmonyos
钅日 勿 XiName2 小时前
一小时速通pytorch之训练分类器(四)(完结)
人工智能·pytorch·python