什么是神经网络?

神经网络是一种受到人脑结构启发的计算模型,用于机器学习和人工智能任务。它由神经元(或称为节点)组成,这些神经元以层次结构排列,形成输入层、隐藏层和输出层。以下是神经网络的基本原理:

1、神经元: 神经元是神经网络的基本单元,模拟生物神经元的功能。每个神经元接收来自前一层的多个输入,对这些输入进行加权求和,然后通过激活函数产生输出。

2、层次结构: 神经网络通常由多个层次组成,包括输入层、隐藏层和输出层。输入层接收外部输入,隐藏层对输入进行处理,输出层产生最终的输出。

3、权重和偏差: 神经元之间的连接由权重表示,这些权重决定了输入的重要性。每个神经元还有一个偏差(bias),用于调整神经元的激活阈值。

4、激活函数: 激活函数决定神经元是否激活(输出非零值)。常用的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和TanH等,用于引入非线性关系,提高网络的表达能力。

5、前向传播: 通过网络的前向传播,输入从输入层传递到输出层,每一层都对输入进行处理并传递到下一层。

6、损失函数: 损失函数用于衡量模型的输出与实际值之间的差异。训练神经网络的目标是最小化损失函数,通常使用梯度下降等优化算法进行权重和偏差的调整。

7、反向传播: 反向传播是通过损失函数梯度下降来更新神经网络的权重和偏差的过程。它通过链式法则从输出层向输入层逐层计算梯度,并更新参数。

8、训练与学习: 通过提供带有标签的训练数据,神经网络通过反向传播学习权重和偏差,使其能够对未标记的数据做出预测。

神经网络的强大之处在于它能够自动学习特征和模式,适用于各种任务,如图像识别、语音识别、自然语言处理等。

相关推荐
hit56实验室12 小时前
【易经系列】《蒙卦》六五:童蒙,吉。
人工智能
AI浩12 小时前
VISION KAN:基于Kan的无注意力视觉骨干网络
人工智能·目标检测
China_Yanhy12 小时前
转型AI运维工程师·Day 10:拥抱“不确定性” —— 断点续训与 Spot 实例抢占
运维·人工智能·python
木昆子12 小时前
实战A2UI:从JSON到像素——深入Lit渲染引擎
前端·人工智能
TGITCIC12 小时前
AI Agent中的 ReAct 和 Ralph Loop对比说明
人工智能·ai大模型·ai agent·ai智能体·agent开发·大模型ai·agent设计模式
挖你家服务器电缆12 小时前
【深度学习系列学习总结】四大框架之一:cnn
人工智能·深度学习·cnn
菡萏如佳人12 小时前
AI时代学习新范式—认知供应链模式(附OpenClaw四步拆解)
人工智能·学习
小马过河R12 小时前
Skill三件套:构建可进化技能仓库的开源工具链
人工智能·开源·ai编程·vibe coding·skills·ai辅助编码
宝贝儿好12 小时前
【强化学习】第九章:基于Action-Critic框架的强化学习
人工智能·python·深度学习·算法·动态规划
laplace012313 小时前
KL 散度1
人工智能·算法·agent·qwen