什么是神经网络?

神经网络是一种受到人脑结构启发的计算模型,用于机器学习和人工智能任务。它由神经元(或称为节点)组成,这些神经元以层次结构排列,形成输入层、隐藏层和输出层。以下是神经网络的基本原理:

1、神经元: 神经元是神经网络的基本单元,模拟生物神经元的功能。每个神经元接收来自前一层的多个输入,对这些输入进行加权求和,然后通过激活函数产生输出。

2、层次结构: 神经网络通常由多个层次组成,包括输入层、隐藏层和输出层。输入层接收外部输入,隐藏层对输入进行处理,输出层产生最终的输出。

3、权重和偏差: 神经元之间的连接由权重表示,这些权重决定了输入的重要性。每个神经元还有一个偏差(bias),用于调整神经元的激活阈值。

4、激活函数: 激活函数决定神经元是否激活(输出非零值)。常用的激活函数包括Sigmoid、ReLU(Rectified Linear Unit)和TanH等,用于引入非线性关系,提高网络的表达能力。

5、前向传播: 通过网络的前向传播,输入从输入层传递到输出层,每一层都对输入进行处理并传递到下一层。

6、损失函数: 损失函数用于衡量模型的输出与实际值之间的差异。训练神经网络的目标是最小化损失函数,通常使用梯度下降等优化算法进行权重和偏差的调整。

7、反向传播: 反向传播是通过损失函数梯度下降来更新神经网络的权重和偏差的过程。它通过链式法则从输出层向输入层逐层计算梯度,并更新参数。

8、训练与学习: 通过提供带有标签的训练数据,神经网络通过反向传播学习权重和偏差,使其能够对未标记的数据做出预测。

神经网络的强大之处在于它能够自动学习特征和模式,适用于各种任务,如图像识别、语音识别、自然语言处理等。

相关推荐
晚霞的不甘5 小时前
小智AI音箱:智能语音交互的未来之选
人工智能·交互·neo4j
java1234_小锋5 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构介绍
深度学习·语言模型·llm·transformer
飞Link5 小时前
【网络与 AI 工程的交叉】多模态模型的数据传输特点:视频、音频、文本混合通道
网络·人工智能·音视频
yLDeveloper5 小时前
一只菜鸟学深度学习的日记:填充 & 步幅 & 下采样
深度学习·dive into deep learning
老蒋新思维6 小时前
创客匠人峰会实录:知识变现的场景化革命 —— 创始人 IP 如何在垂直领域建立变现壁垒
网络·人工智能·tcp/ip·重构·知识付费·创始人ip·创客匠人
老蒋新思维6 小时前
创客匠人峰会深度解析:智能体驱动知识变现的数字资产化路径 —— 创始人 IP 的长期增长密码
人工智能·网络协议·tcp/ip·重构·知识付费·创始人ip·创客匠人
为爱停留6 小时前
Spring AI实现RAG(检索增强生成)详解与实践
人工智能·深度学习·spring
像风没有归宿a6 小时前
2025年人工智能十大技术突破:从AGI到多模态大模型
人工智能
噜~噜~噜~6 小时前
显式与隐式欧拉法(Explicit Euler and Implicit Euler)的个人理解
深度学习·显式欧拉法·隐式欧拉法·动力学系统
深鱼~6 小时前
十分钟在 openEuler 上搭建本地 AI 服务:LocalAI 快速部署教程
人工智能