机器学习异常值处理 逻辑汇总一

一 清除数据中恒定不变值

如果某个数据长时间不变,默认异常,清除掉该部分数据:

python 复制代码
# 使用 `shift` 和 `cumsum` 来创建一个分组键,每次值改变都会增加组号
g = (df['沉淀池3号进水流量'] != df['沉淀池3号进水流量'].shift()).cumsum()

# 使用 `transform` 来计算每个组的大小
counts = df.groupby(g)['沉淀池3号进水流量'].transform('count')
print('counts:', counts)
# 应用一个布尔掩码,将连续出现至少5次的值替换为 NaN
df.loc[counts >= 5, '沉淀池3号进水流量'] = np.nan

# 现在df中的'column_name'列已经将所有连续5个相同的值替换为了 NaN
df.info()

二 清除超出范围的值

指定数据范围外的值清洗:

python 复制代码
df['原水浊度'] = df['原水浊度'].apply(lambda x: x if 0.01 <= x <= 3 else None)

三 使用其中一列数据替换另一列数据

python 复制代码
all_data.loc[all_data['温度'].isnull(), '温度'] = all_data.loc[all_data['温度'].isnull(), '温度2']

四 指定条件替换某一部分数据 np.where

python 复制代码
df['沉后水浊度3'] = np.where(df.index > mid_time, 0.1, df['沉后水浊度3'])
相关推荐
是店小二呀33 分钟前
Doubao-Seed-Code 打造一个专属的规划平台
人工智能·aigc·doubao
幂律智能2 小时前
幂律智能入选“AI100应用标杆”,赋能产业发展新范式
人工智能·百度
咚咚王者2 小时前
人工智能之数据分析 numpy:第十章 副本视图
人工智能·数据分析·numpy
Dev7z3 小时前
让阅卷不再繁琐:图像识别与数据分析提升智能答题卡评分效率
人工智能·计算机视觉
咚咚王者3 小时前
人工智能之数据分析 numpy:第十一章 字符串与字节交换
人工智能·数据分析·numpy
数字孪生家族5 小时前
视频孪生与空间智能:重构数字时空认知,定义智能决策新范式
人工智能·重构·空间智能·视频孪生与空间智能
FL171713146 小时前
Pytorch保存pt和pkl
人工智能·pytorch·python
jieshenai6 小时前
5090显卡,基于vllm完成大模型推理
人工智能·自然语言处理
逻极7 小时前
云智融合:AIGC与云计算服务新范式(深度解析)
人工智能·云计算·aigc·云服务