机器学习异常值处理 逻辑汇总一

一 清除数据中恒定不变值

如果某个数据长时间不变,默认异常,清除掉该部分数据:

python 复制代码
# 使用 `shift` 和 `cumsum` 来创建一个分组键,每次值改变都会增加组号
g = (df['沉淀池3号进水流量'] != df['沉淀池3号进水流量'].shift()).cumsum()

# 使用 `transform` 来计算每个组的大小
counts = df.groupby(g)['沉淀池3号进水流量'].transform('count')
print('counts:', counts)
# 应用一个布尔掩码,将连续出现至少5次的值替换为 NaN
df.loc[counts >= 5, '沉淀池3号进水流量'] = np.nan

# 现在df中的'column_name'列已经将所有连续5个相同的值替换为了 NaN
df.info()

二 清除超出范围的值

指定数据范围外的值清洗:

python 复制代码
df['原水浊度'] = df['原水浊度'].apply(lambda x: x if 0.01 <= x <= 3 else None)

三 使用其中一列数据替换另一列数据

python 复制代码
all_data.loc[all_data['温度'].isnull(), '温度'] = all_data.loc[all_data['温度'].isnull(), '温度2']

四 指定条件替换某一部分数据 np.where

python 复制代码
df['沉后水浊度3'] = np.where(df.index > mid_time, 0.1, df['沉后水浊度3'])
相关推荐
硅谷秋水41 分钟前
RoboBrain 2.5:视野中的深度,思维中的时间
深度学习·机器学习·计算机视觉·语言模型·机器人
zhangfeng11331 小时前
Warmup Scheduler深度学习训练中,在训练初期使用较低学习率进行预热(Warmup),然后再按照预定策略(如余弦退火、阶梯下降等)衰减学习率的方法
人工智能·深度学习·学习
Faker66363aaa1 小时前
城市地标建筑与车辆检测 - 基于YOLOv10n的高效目标检测模型训练与应用
人工智能·yolo·目标检测
沃达德软件1 小时前
电信诈骗预警平台功能解析
大数据·数据仓库·人工智能·深度学习·机器学习·数据库开发
Hy行者勇哥1 小时前
Seedance 全面解析:定义、使用指南、同类软件与完整攻略
人工智能·学习方法·视频
琅琊榜首20201 小时前
AI赋能内容转化:小说转短剧实操全流程(零编程基础适配)
大数据·人工智能
青铜弟弟1 小时前
基于物理的深度学习模型
人工智能·深度学习
是店小二呀1 小时前
atvoss:异构计算视觉处理与AI模型加速套件深度解析
人工智能
MaoziShan2 小时前
CMU Subword Modeling | 07 Allomorphy
人工智能·机器学习·语言模型·自然语言处理
诚思报告YH2 小时前
生物制剂与生物类似药市场洞察:2026-2032年复合增长率(CAGR)为8.1%
大数据·人工智能·microsoft