Flume基础知识(四):Flume实战之实时监控单个追加文件

1)案例需求:

实时监控 Hive 日志,并上传到 HDFS 中

2)需求分析:

3)实现步骤:

(1)Flume 要想将数据输出到 HDFS,依赖 Hadoop 相关 jar 包

检查/etc/profile.d/my_env.sh 文件,确认 Hadoop 和 Java 环境变量配置正确

复制代码
JAVA_HOME=/opt/module/jdk1.8.0_212
HADOOP_HOME=/opt/module/ha/hadoop-3.1.3
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export PATH JAVA_HOME HADOOP_HOME

(2)创建 flume-file-hdfs.conf 文件

复制代码
vim flume-file-hdfs.conf

注:要想读取 Linux 系统中的文件,就得按照 Linux 命令的规则执行命令。由于 Hive 日志在 Linux 系统中所以读取文件的类型选择:exec 即 execute 执行的意思。表示执行 Linux 命令来读取文件。

添加如下内容

复制代码
# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hadoop100:8020/flume/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k2.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k2.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k2.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 60
#设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关
a2.sinks.k2.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2

注意:对于所有与时间相关的转义序列,Event Header 中必须存在以 "timestamp"的 key(除非 hdfs.useLocalTimeStamp 设置为 true,此方法会使用 TimestampInterceptor 自 动添加 timestamp)。

a3.sinks.k3.hdfs.useLocalTimeStamp = true

(3)运行 Flume

复制代码
bin/flume-ng agent --conf conf/ --name a2 --conf-file job/flume-file-hdfs.conf

(4)开启 Hadoop 和 Hive 并操作 Hive 产生日志

(5)在 HDFS 上查看文件。

相关推荐
BYSJMG4 分钟前
计算机毕业设计选题推荐:基于Hadoop的城市交通数据可视化系统
大数据·vue.js·hadoop·分布式·后端·信息可视化·课程设计
BYSJMG14 分钟前
Python毕业设计选题推荐:基于大数据的美食数据分析与可视化系统实战
大数据·vue.js·后端·python·数据分析·课程设计·美食
阿珍爱上了阿强2.018 分钟前
Elasticsearch 实战:客户数据索引设计与精准筛选查询实践
大数据·elasticsearch·搜索引擎
ba_pi32 分钟前
每天写点什么2026-02-2(1.5)数字化转型和元宇宙
大数据·人工智能
小W与影刀RPA1 小时前
【影刀RPA】:智能过滤敏感词,高效输出表格
大数据·人工智能·python·低代码·自动化·rpa·影刀rpa
远方16091 小时前
112-Oracle database 26ai下载和安装环境准备
大数据·数据库·sql·oracle·database
2501_947908201 小时前
范建峰携手安盛投资 助力普惠金融惠及更多民生领域
大数据·人工智能·金融
YangYang9YangYan2 小时前
2026高职大数据专业数据分析学习必要性
大数据·学习·数据分析
nimadan122 小时前
**AI漫剧剧本写作工具2025推荐,三款适配不同创作场景的
大数据·人工智能·python
亿信华辰软件2 小时前
已经上了数据中台,还要做数据治理吗?
大数据·人工智能·数据治理