Flume基础知识(四):Flume实战之实时监控单个追加文件

1)案例需求:

实时监控 Hive 日志,并上传到 HDFS 中

2)需求分析:

3)实现步骤:

(1)Flume 要想将数据输出到 HDFS,依赖 Hadoop 相关 jar 包

检查/etc/profile.d/my_env.sh 文件,确认 Hadoop 和 Java 环境变量配置正确

复制代码
JAVA_HOME=/opt/module/jdk1.8.0_212
HADOOP_HOME=/opt/module/ha/hadoop-3.1.3
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export PATH JAVA_HOME HADOOP_HOME

(2)创建 flume-file-hdfs.conf 文件

复制代码
vim flume-file-hdfs.conf

注:要想读取 Linux 系统中的文件,就得按照 Linux 命令的规则执行命令。由于 Hive 日志在 Linux 系统中所以读取文件的类型选择:exec 即 execute 执行的意思。表示执行 Linux 命令来读取文件。

添加如下内容

复制代码
# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hadoop100:8020/flume/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k2.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k2.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k2.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 60
#设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关
a2.sinks.k2.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2

注意:对于所有与时间相关的转义序列,Event Header 中必须存在以 "timestamp"的 key(除非 hdfs.useLocalTimeStamp 设置为 true,此方法会使用 TimestampInterceptor 自 动添加 timestamp)。

a3.sinks.k3.hdfs.useLocalTimeStamp = true

(3)运行 Flume

复制代码
bin/flume-ng agent --conf conf/ --name a2 --conf-file job/flume-file-hdfs.conf

(4)开启 Hadoop 和 Hive 并操作 Hive 产生日志

(5)在 HDFS 上查看文件。

相关推荐
天硕国产存储技术站3 小时前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘
雷文成.思泉软件3 小时前
以ERP为核心、企微为门户,实现一体化集成
大数据·低代码·创业创新
东哥说-MES|从入门到精通5 小时前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
南飞测绘视界6 小时前
上市公司绿色专利申请、授权数据(1999-2024年)
大数据·专利·上市公司
一个天蝎座 白勺 程序猿6 小时前
KingbaseES在政务领域的应用实践——武汉人社大数据平台“数字化服务新模式”
大数据·数据库·政务·kingbasees·金仓数据库
pale_moonlight7 小时前
十、 Scala 应用实践 (上)
大数据·开发语言·scala
第二只羽毛8 小时前
遵守robots协议的友好爬虫
大数据·爬虫·python·算法·网络爬虫
Elastic 中国社区官方博客8 小时前
使用 A2A 协议和 MCP 在 Elasticsearch 中创建一个 LLM agent 新闻室:第二部分
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
安达发公司8 小时前
安达发|告别手工排产!车间排产软件成为中央厨房的“最强大脑”
大数据·人工智能·aps高级排程·aps排程软件·安达发aps·车间排产软件
武子康9 小时前
大数据-166 Apache Kylin 1.6 Streaming Cubing 实战:Kafka 到分钟级 OLAP
大数据·后端·apache kylin