Flume基础知识(四):Flume实战之实时监控单个追加文件

1)案例需求:

实时监控 Hive 日志,并上传到 HDFS 中

2)需求分析:

3)实现步骤:

(1)Flume 要想将数据输出到 HDFS,依赖 Hadoop 相关 jar 包

检查/etc/profile.d/my_env.sh 文件,确认 Hadoop 和 Java 环境变量配置正确

复制代码
JAVA_HOME=/opt/module/jdk1.8.0_212
HADOOP_HOME=/opt/module/ha/hadoop-3.1.3
PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export PATH JAVA_HOME HADOOP_HOME

(2)创建 flume-file-hdfs.conf 文件

复制代码
vim flume-file-hdfs.conf

注:要想读取 Linux 系统中的文件,就得按照 Linux 命令的规则执行命令。由于 Hive 日志在 Linux 系统中所以读取文件的类型选择:exec 即 execute 执行的意思。表示执行 Linux 命令来读取文件。

添加如下内容

复制代码
# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log
# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hadoop100:8020/flume/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k2.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k2.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k2.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 60
#设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关
a2.sinks.k2.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2

注意:对于所有与时间相关的转义序列,Event Header 中必须存在以 "timestamp"的 key(除非 hdfs.useLocalTimeStamp 设置为 true,此方法会使用 TimestampInterceptor 自 动添加 timestamp)。

a3.sinks.k3.hdfs.useLocalTimeStamp = true

(3)运行 Flume

复制代码
bin/flume-ng agent --conf conf/ --name a2 --conf-file job/flume-file-hdfs.conf

(4)开启 Hadoop 和 Hive 并操作 Hive 产生日志

(5)在 HDFS 上查看文件。

相关推荐
RestCloud19 分钟前
ETLCloud中数据生成规则使用技巧
大数据·服务器·数据库·etl·数字化转型·数据处理·集成平台
Jack_hrx6 小时前
从0到1构建高并发秒杀系统:实战 RocketMQ 异步削峰与Redis预减库存
大数据·rocketmq·高并发·秒杀系统实战·异步削峰
Double@加贝7 小时前
MaxCompute的Logview分析详解
大数据·阿里云·dataworks·maxcompute
Mikhail_G9 小时前
Python应用八股文
大数据·运维·开发语言·python·数据分析
Elastic 中国社区官方博客13 小时前
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
大数据·开发语言·javascript·elasticsearch·搜索引擎·全文检索·apache
lifallen15 小时前
Flink task、Operator 和 UDF 之间的关系
java·大数据·flink
源码宝17 小时前
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
java·大数据·源码·智慧工地·智能监测·智能施工
XiaoQiong.Zhang17 小时前
简历模板3——数据挖掘工程师5年经验
大数据·人工智能·机器学习·数据挖掘
Faith_xzc19 小时前
Apache Doris FE 问题排查与故障分析全景指南
大数据·数据仓库·apache·doris
潘小磊19 小时前
高频面试之6Hive
大数据·hive·面试·职场和发展