【Matplotlib】基础设置之图像处理05

图像基础

导入相应的包:

python 复制代码
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
%matplotlib inline

导入图像

我们首先导入上面的图像,注意 matplotlib 默认只支持 PNG 格式的图像,我们可以使用 mpimg.imread 方法读入这幅图像:

python 复制代码
img = mpimg.imread('stinkbug.png')
python 复制代码
img.shape
(375L, 500L, 3L)

这是一个 375 x 500 x 3RGB 图像,并且每个像素使用 uint8 分别表示 RGB 三个通道的值。不过在处理的时候,matplotlib 将它们的值归一化到 0.0~1.0 之间:

python 复制代码
img.dtype
dtype('float32')

显示图像

使用 plt.imshow() 可以显示图像:

python 复制代码
imgplot = plt.imshow(img)

伪彩色图像

从单通道模拟彩色图像:

python 复制代码
lum_img = img[:,:,0]
imgplot = plt.imshow(lum_img)

改变 colormap

python 复制代码
imgplot = plt.imshow(lum_img)
imgplot.set_cmap('hot')
python 复制代码
imgplot = plt.imshow(lum_img)
imgplot.set_cmap('spectral')

显示色度条:

python 复制代码
imgplot = plt.imshow(lum_img)
imgplot.set_cmap('spectral')
plt.colorbar()
plt.show()

限制显示范围

先查看直方图:

python 复制代码
plt.hist(lum_img.flatten(), 256, range=(0.0,1.0), fc='k', ec='k')
plt.show()

将显示范围设为 0.0-0.7

python 复制代码
imgplot = plt.imshow(lum_img)
imgplot.set_clim(0.0,0.7)

resize 操作

python 复制代码
from PIL import Image
img = Image.open('stinkbug.png')
rsize = img.resize((img.size[0]/10,img.size[1]/10))
rsizeArr = np.asarray(rsize) 
imgplot = plt.imshow(rsizeArr)

上面我们将这个图像使用 PIL 的 Image 对象导入,并将其 resize 为原来的 1/100,可以看到很多细节都丢失了。

在画图时,由于画面的大小与实际像素的大小可能不一致,所以不一致的地方会进行插值处理,尝试一下不同的插值方法:

python 复制代码
imgplot = plt.imshow(rsizeArr)
imgplot.set_interpolation('nearest')
python 复制代码
imgplot = plt.imshow(rsizeArr)
imgplot.set_interpolation('bicubic')
相关推荐
Him__10 分钟前
OpenAI发布最新推理模型o3-mini
人工智能·chatgpt·deepseek
梦云澜26 分钟前
论文阅读(十):用可分解图模型模拟连锁不平衡
论文阅读·人工智能·深度学习
FL162386312936 分钟前
马铃薯叶子病害检测数据集VOC+YOLO格式1332张9类别
人工智能·深度学习·机器学习
九亿AI算法优化工作室&2 小时前
GWO优化LSBooST回归预测matlab
人工智能·python·算法·机器学习·matlab·数据挖掘·回归
东锋1.32 小时前
Ollama 安装教程:轻松开启本地大语言模型之旅
人工智能
一只昀2 小时前
【产品经理学习案例——AI翻译棒出海业务】
人工智能·ai·产品经理
蓝染k9z3 小时前
在Ubuntu上使用Docker部署DeepSeek
linux·人工智能·ubuntu·docker·deepseek+
小李学AI4 小时前
基于YOLO11的遥感影像山体滑坡检测系统
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉·yolo11
笨小古4 小时前
保姆级教程:利用Ollama与Open-WebUI本地部署 DeedSeek-R1大模型
人工智能·deepseek
AI浩5 小时前
【Block总结】CPCA,通道优先卷积注意力|即插即用
人工智能·深度学习·目标检测·计算机视觉