【sklearn练习】datasets的使用

一、数据集分类

1、fetch类的数据集:

以 "fetch" 开头的数据集,这些数据集通常不包含在 scikit-learn 的标准安装中,需要从远程服务器上下载。这些数据集通常比标准数据集更大,因此在使用它们之前,需要通过网络下载它们。

示例(1)

python 复制代码
from sklearn.datasets import fetch_olivetti_faces

faces = fetch_olivetti_faces()

2、load类的数据集:

"load" 开头的数据集是一些较小且包含在 scikit-learn 标准安装中的示例数据集。这些数据集不需要从远程服务器下载,因为它们已经包含在 scikit-learn 的安装包中。

示例(1)

3、make类的数据集:

"load" 开头的数据集是一些较小且包含在 scikit-learn 标准安装中的示例数据集。这些数据集不需要从远程服务器下载,因为它们已经包含在 scikit-learn 的安装包中。

示例(1)

python 复制代码
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
X, y = make_regression(n_samples=100, n_features=1, noise=0.1)
plt.scatter(X, y)
plt.show()

下面图是把noise改为10的图像:

相关推荐
Elastic 中国社区官方博客1 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei1 小时前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910132 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
许泽宇的技术分享2 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生242 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
张子夜 iiii4 小时前
实战项目-----Python+OpenCV 实现对视频的椒盐噪声注入与实时平滑还原”
开发语言·python·opencv·计算机视觉
静西子4 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理
cxr8284 小时前
基于Claude Code的 规范驱动开发(SDD)指南
人工智能·hive·驱动开发·敏捷流程·智能体
Billy_Zuo4 小时前
人工智能机器学习——决策树、异常检测、主成分分析(PCA)
人工智能·决策树·机器学习
小王爱学人工智能4 小时前
OpenCV的图像金字塔
人工智能·opencv·计算机视觉