一、数据集分类
1、fetch类的数据集:
以 "fetch" 开头的数据集,这些数据集通常不包含在 scikit-learn 的标准安装中,需要从远程服务器上下载。这些数据集通常比标准数据集更大,因此在使用它们之前,需要通过网络下载它们。
示例(1)
python
from sklearn.datasets import fetch_olivetti_faces
faces = fetch_olivetti_faces()
2、load类的数据集:
"load" 开头的数据集是一些较小且包含在 scikit-learn 标准安装中的示例数据集。这些数据集不需要从远程服务器下载,因为它们已经包含在 scikit-learn 的安装包中。
示例(1)
3、make类的数据集:
"load" 开头的数据集是一些较小且包含在 scikit-learn 标准安装中的示例数据集。这些数据集不需要从远程服务器下载,因为它们已经包含在 scikit-learn 的安装包中。
示例(1)
python
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt
X, y = make_regression(n_samples=100, n_features=1, noise=0.1)
plt.scatter(X, y)
plt.show()
下面图是把noise改为10的图像: