dropout

Dropout是一种用于神经网络的正则化技术,旨在减少过拟合。过拟合通常在模型在训练数据上表现得很好,但在新数据上表现不佳时发生。Dropout通过在训练过程中随机关闭(丢弃)神经元的方式来防止过拟合。

Dropout的原理如下:

  1. 随机丢弃神经元: 在每个训练迭代中,Dropout会随机选择一些神经元并将其输出置零。这相当于将这些神经元从网络中删除,因此网络的每个训练迭代都会使用不同的子集神经元。

  2. 独立丢弃: 每个神经元都有一个与其相关的丢弃概率,通常用超参数 dropout 表示。该概率表示在训练时每个神经元被丢弃的概率。例如,如果 dropout=0.5,则每个神经元在每个训练迭代中都有50%的概率被丢弃。

  3. 防止过拟合: Dropout通过减少神经元之间的共适应性(co-adaptation)来防止过拟合。因为每个神经元都可能在某个训练迭代中被丢弃,网络不能过度依赖于任何一个特定的神经元,从而增加了模型的泛化能力。

  4. 测试时全保留: 在测试阶段,所有神经元都被保留,但其输出值要乘以 1 - dropout 这个比例。这是为了在测试时保持输入和输出之间的一致性,因为在训练时某些神经元被丢弃了。

Dropout的引入可以看作是在训练过程中对模型进行了集成学习,通过多次训练不同的子集,模型能够更鲁棒地适应不同的数据分布,从而提高泛化性能。

复制代码
def dropout_layer(X,dropout):
    assert 0 <= dropout <= 1
    if dropout == 1:
        return torch.zeros_like(X)
    if dropout == 0:
        return X
    mask = (torch.rand(X.shape) > dropout).float()
    return mask * X / (1.0 - dropout)
相关推荐
技术狂人168几秒前
(七)大模型工程落地与部署 10 题!vLLM/QPS 优化 / 高可用,面试实战必备(工程篇)
人工智能·深度学习·面试·职场和发展·vllm
Hcoco_me1 分钟前
大模型面试题37:Scaling Law完全指南
人工智能·深度学习·学习·自然语言处理·transformer
Aspect of twilight13 分钟前
LLM输出方式(generate)详解
人工智能·深度学习·llm
高洁0115 分钟前
10分钟了解向量数据库(1)
python·深度学习·机器学习·transformer·知识图谱
gihigo199816 分钟前
MATLAB中实现信号迭代解卷积的几种方法
人工智能·深度学习·matlab
DP+GISer17 分钟前
00基于pytorch的深度学习遥感地物分类全流程实战教程(包含遥感深度学习数据集制作与大图预测)-前言
pytorch·python·深度学习·图像分割·遥感·地物分类
kisshuan1239618 分钟前
黄芪属植物物种识别与分类:基于 Faster R-CNN C4 模型的深度学习实现
深度学习·分类·r语言
拉姆哥的小屋19 分钟前
从T5到Sentence-BERT:打造下一代个性化推荐系统 - EmbSum深度解析
人工智能·深度学习
CoovallyAIHub25 分钟前
YOLOv12之后,AI在火场如何进化?2025最后一篇YOLO论文揭示:要在浓烟中看见关键,仅靠注意力还不够
深度学习·算法·计算机视觉
LDG_AGI41 分钟前
【推荐系统】深度学习训练框架(二十一):DistributedCheckPoint(DCP) — PyTorch分布式模型存储与加载
pytorch·分布式·深度学习