dropout

Dropout是一种用于神经网络的正则化技术,旨在减少过拟合。过拟合通常在模型在训练数据上表现得很好,但在新数据上表现不佳时发生。Dropout通过在训练过程中随机关闭(丢弃)神经元的方式来防止过拟合。

Dropout的原理如下:

  1. 随机丢弃神经元: 在每个训练迭代中,Dropout会随机选择一些神经元并将其输出置零。这相当于将这些神经元从网络中删除,因此网络的每个训练迭代都会使用不同的子集神经元。

  2. 独立丢弃: 每个神经元都有一个与其相关的丢弃概率,通常用超参数 dropout 表示。该概率表示在训练时每个神经元被丢弃的概率。例如,如果 dropout=0.5,则每个神经元在每个训练迭代中都有50%的概率被丢弃。

  3. 防止过拟合: Dropout通过减少神经元之间的共适应性(co-adaptation)来防止过拟合。因为每个神经元都可能在某个训练迭代中被丢弃,网络不能过度依赖于任何一个特定的神经元,从而增加了模型的泛化能力。

  4. 测试时全保留: 在测试阶段,所有神经元都被保留,但其输出值要乘以 1 - dropout 这个比例。这是为了在测试时保持输入和输出之间的一致性,因为在训练时某些神经元被丢弃了。

Dropout的引入可以看作是在训练过程中对模型进行了集成学习,通过多次训练不同的子集,模型能够更鲁棒地适应不同的数据分布,从而提高泛化性能。

复制代码
def dropout_layer(X,dropout):
    assert 0 <= dropout <= 1
    if dropout == 1:
        return torch.zeros_like(X)
    if dropout == 0:
        return X
    mask = (torch.rand(X.shape) > dropout).float()
    return mask * X / (1.0 - dropout)
相关推荐
子午2 小时前
【2026原创】动物识别系统~Python+深度学习+人工智能+模型训练+图像识别
人工智能·python·深度学习
victory04312 小时前
大模型学习阶段总结和下一阶段展望
深度学习·学习·大模型
摘星观月2 小时前
【三维重建2】TCPFormer以及NeRF相关SOTA方法
人工智能·深度学习
人工小情绪2 小时前
深度学习模型部署
人工智能·深度学习
cyyt3 小时前
深度学习周报(1.05~1.11)
人工智能·深度学习
AI人工智能+3 小时前
专利证书识别技术;通过计算机视觉与深度学习,实现了专利文档从纸质到结构化数据的智能转换
深度学习·ocr·专利证书识别
没学上了4 小时前
SLM-多头注意力机制
pytorch·python·深度学习
大模型最新论文速读4 小时前
「英伟达改进 GRPO」解决多奖励场景优势坍缩问题
人工智能·深度学习·自然语言处理
子午4 小时前
【2026原创】中草药识别系统实现~Python+深度学习+模型训练+人工智能
人工智能·python·深度学习
人工小情绪4 小时前
深度学习模型部署形式
人工智能·深度学习