dropout

Dropout是一种用于神经网络的正则化技术,旨在减少过拟合。过拟合通常在模型在训练数据上表现得很好,但在新数据上表现不佳时发生。Dropout通过在训练过程中随机关闭(丢弃)神经元的方式来防止过拟合。

Dropout的原理如下:

  1. 随机丢弃神经元: 在每个训练迭代中,Dropout会随机选择一些神经元并将其输出置零。这相当于将这些神经元从网络中删除,因此网络的每个训练迭代都会使用不同的子集神经元。

  2. 独立丢弃: 每个神经元都有一个与其相关的丢弃概率,通常用超参数 dropout 表示。该概率表示在训练时每个神经元被丢弃的概率。例如,如果 dropout=0.5,则每个神经元在每个训练迭代中都有50%的概率被丢弃。

  3. 防止过拟合: Dropout通过减少神经元之间的共适应性(co-adaptation)来防止过拟合。因为每个神经元都可能在某个训练迭代中被丢弃,网络不能过度依赖于任何一个特定的神经元,从而增加了模型的泛化能力。

  4. 测试时全保留: 在测试阶段,所有神经元都被保留,但其输出值要乘以 1 - dropout 这个比例。这是为了在测试时保持输入和输出之间的一致性,因为在训练时某些神经元被丢弃了。

Dropout的引入可以看作是在训练过程中对模型进行了集成学习,通过多次训练不同的子集,模型能够更鲁棒地适应不同的数据分布,从而提高泛化性能。

复制代码
def dropout_layer(X,dropout):
    assert 0 <= dropout <= 1
    if dropout == 1:
        return torch.zeros_like(X)
    if dropout == 0:
        return X
    mask = (torch.rand(X.shape) > dropout).float()
    return mask * X / (1.0 - dropout)
相关推荐
Network_Engineer6 分钟前
从零手写RNN&BiRNN:从原理到双向实现
人工智能·rnn·深度学习·神经网络
机器学习之心7 分钟前
Bayes-TCN+SHAP分析贝叶斯优化深度学习多变量分类预测可解释性分析!Matlab完整代码
深度学习·matlab·分类·贝叶斯优化深度学习
WGS.11 分钟前
fastenhancer DPRNN torch 实现
pytorch·深度学习
机器学习之心15 分钟前
TCN+SHAP分析深度学习多变量分类预测可解释性分析!Matlab完整代码
深度学习·matlab·分类·多变量分类预测可解释性分析
睡醒了叭15 分钟前
目标检测-深度学习-SSD模型项目
人工智能·深度学习·目标检测
冰西瓜60015 分钟前
从项目入手机器学习(五)—— 机器学习尝试
人工智能·深度学习·机器学习
Coding茶水间15 分钟前
基于深度学习的狗品种检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
小鸡吃米…1 小时前
机器学习 - 轮次(Epoch)
人工智能·深度学习·机器学习
Loacnasfhia93 小时前
【深度学习】【目标检测】YOLO11-C3k2-Faster-EMA模型实现草莓与番茄成熟度及病害识别系统
人工智能·深度学习·目标检测
XX風4 小时前
5.1 deep learning introduction
人工智能·深度学习