Prompting Engineer 十大核心设计原则

1. 明确目标(Clarify Objective)

  • 设计提示前,必须清楚要达成的具体目标(如:生成、总结、翻译、分类等)。

  • 明确输入输出的格式和预期的内容。

✅ 示例:

❌ "写一段介绍" → 太模糊

✅ "请用200字介绍GPT-4的特点,面向中学生,用通俗语言表达"


2. 具体明确(Be Specific and Concrete)

  • 使用清晰、无歧义、具体的语言来引导模型。

  • 包括角色设定、任务步骤、输入输出格式等。

✅ 示例:

"你是一个Python专家。请阅读以下函数,分析其中的Bug并建议改进。"


3. 分步骤指导(Step-by-step Decomposition)

  • 将复杂任务拆解为明确步骤,有助于提升准确率与可控性。

  • 可使用 "思考链(Chain of Thought)" 提示风格。

✅ 示例:

"请先分析题意,再列出已知条件,然后一步步解答。"


4. 提供示例(Few-shot / Zero-shot)

  • Few-shot learning:给模型几个例子来示范任务格式和风格。

  • Zero-shot learning:任务明确、无示例,引导模型推理完成任务。

✅ 示例:

复制代码
输入:这个产品真不错!
输出:积极

输入:这个服务太差了。
输出:消极

5. 控制风格和语气(Control Style & Tone)

  • 明确要求模型使用什么语气(正式、幽默、中立等)。

  • 常用于内容创作、营销、客服等场景。

✅ 示例:

"请用轻松幽默的语气描述以下科技新闻。"


6. 设定角色(Role Assignment)

  • 通过设定"你是XX专家/角色"引导模型从特定角度思考。

✅ 示例:

"你是一个资深法律顾问,请分析以下合同条款中可能存在的法律风险。"


7. 约束输出格式(Constrain Output Format)

  • 明确指定输出结构(如JSON、Markdown、表格等)便于程序解析。

✅ 示例:

"请以JSON格式输出三个要点,每个包含'title'和'detail'字段。"


8. 迭代与调试(Iterate & Refine)

  • 提示设计是一个试错过程,需要不断优化以适配任务和模型响应。

  • 可使用 prompt injection, prompt chaining 等高级技巧。


9. 使用辅助词提高稳定性

  • 使用"请思考"、"逐步推理"、"假设你是..."等提示语言,提高响应稳定性和可解释性。

✅ 示例:

"请思考完成这道题的必要步骤,并逐步推理。"


10. 避免模型幻觉(Mitigate Hallucination)

  • 避免开放性或歧义问题;如果结果涉及事实,明确指出"仅在基于下列信息回答"。

✅ 示例:

"仅基于以下材料回答问题,若无法确认答案,请回复'未知'。"

相关推荐
说私域3 分钟前
开源AI大模型AI智能名片S2B2C商城小程序源码:重塑商业运营节奏与用户体验
人工智能·ux
真智AI12 分钟前
Go与Python在数据管道与分析项目中的抉择:性能与灵活性的较量
人工智能·python·go
9呀34 分钟前
【人工智能99问】梯度消失、梯度爆炸的定义、后果及规避手段?(7/99)
人工智能
lishaoan7743 分钟前
用TensorFlow进行逻辑回归(四)
人工智能·tensorflow·逻辑回归
nbsaas-boot44 分钟前
AI交互的初期魅力与后期维护挑战
人工智能·交互
一勺汤1 小时前
多尺度频率辅助类 Mamba 线性注意力模块(MFM),融合频域和空域特征,提升多尺度、复杂场景下的目标检测能力
深度学习·yolo·yolov12·yolo12·yolo12改进·小目标·mamba like
柠檬味拥抱2 小时前
基于MCP的一体化AI管线:从模型训练到部署监控的全链路解析
人工智能
t_hj2 小时前
Selector的用法
人工智能·python·tensorflow
mortimer2 小时前
为 Index-TTS 打造一个开箱即用的 Windows 整合包:从环境隔离到依赖难题的解决
人工智能·python·github
算家计算2 小时前
今天,OpenAI彻底颠覆AI助手!ChatGPT智能体上线,融合三大AI
人工智能·chatgpt·agent