Prompting Engineer 十大核心设计原则

1. 明确目标(Clarify Objective)

  • 设计提示前,必须清楚要达成的具体目标(如:生成、总结、翻译、分类等)。

  • 明确输入输出的格式和预期的内容。

✅ 示例:

❌ "写一段介绍" → 太模糊

✅ "请用200字介绍GPT-4的特点,面向中学生,用通俗语言表达"


2. 具体明确(Be Specific and Concrete)

  • 使用清晰、无歧义、具体的语言来引导模型。

  • 包括角色设定、任务步骤、输入输出格式等。

✅ 示例:

"你是一个Python专家。请阅读以下函数,分析其中的Bug并建议改进。"


3. 分步骤指导(Step-by-step Decomposition)

  • 将复杂任务拆解为明确步骤,有助于提升准确率与可控性。

  • 可使用 "思考链(Chain of Thought)" 提示风格。

✅ 示例:

"请先分析题意,再列出已知条件,然后一步步解答。"


4. 提供示例(Few-shot / Zero-shot)

  • Few-shot learning:给模型几个例子来示范任务格式和风格。

  • Zero-shot learning:任务明确、无示例,引导模型推理完成任务。

✅ 示例:

复制代码
输入:这个产品真不错!
输出:积极

输入:这个服务太差了。
输出:消极

5. 控制风格和语气(Control Style & Tone)

  • 明确要求模型使用什么语气(正式、幽默、中立等)。

  • 常用于内容创作、营销、客服等场景。

✅ 示例:

"请用轻松幽默的语气描述以下科技新闻。"


6. 设定角色(Role Assignment)

  • 通过设定"你是XX专家/角色"引导模型从特定角度思考。

✅ 示例:

"你是一个资深法律顾问,请分析以下合同条款中可能存在的法律风险。"


7. 约束输出格式(Constrain Output Format)

  • 明确指定输出结构(如JSON、Markdown、表格等)便于程序解析。

✅ 示例:

"请以JSON格式输出三个要点,每个包含'title'和'detail'字段。"


8. 迭代与调试(Iterate & Refine)

  • 提示设计是一个试错过程,需要不断优化以适配任务和模型响应。

  • 可使用 prompt injection, prompt chaining 等高级技巧。


9. 使用辅助词提高稳定性

  • 使用"请思考"、"逐步推理"、"假设你是..."等提示语言,提高响应稳定性和可解释性。

✅ 示例:

"请思考完成这道题的必要步骤,并逐步推理。"


10. 避免模型幻觉(Mitigate Hallucination)

  • 避免开放性或歧义问题;如果结果涉及事实,明确指出"仅在基于下列信息回答"。

✅ 示例:

"仅基于以下材料回答问题,若无法确认答案,请回复'未知'。"

相关推荐
迎仔3 分钟前
06-AI开发进阶
人工智能
陈天伟教授4 分钟前
人工智能应用- 语言处理:01.机器翻译:人类语言的特点
人工智能·自然语言处理·机器翻译
Codebee5 分钟前
OoderAgent 相比主流Agent框架的五大核心独特优势
人工智能
home_4986 分钟前
与gemini关于神的对话
人工智能·科幻·神学
代码改善世界6 分钟前
CANN深度解构:中国AI系统软件的原创性突破与架构创新
大数据·人工智能·架构
Fairy要carry8 分钟前
面试-Torch函数
人工智能
aiguangyuan22 分钟前
基于BERT的中文命名实体识别实战解析
人工智能·python·nlp
量子-Alex25 分钟前
【大模型RLHF】Training language models to follow instructions with human feedback
人工智能·语言模型·自然语言处理
晚霞的不甘30 分钟前
Flutter for OpenHarmony 实现计算几何:Graham Scan 凸包算法的可视化演示
人工智能·算法·flutter·架构·开源·音视频
陈天伟教授39 分钟前
人工智能应用- 语言处理:04.统计机器翻译
人工智能·自然语言处理·机器翻译