自然语言转SQL,一个微调ChatGPT3.5的实例(上)--训练数据准备

背景

让非技术人员可以从数据库中提问,这是学术界和工业界多年来感兴趣的问题。最近,大型语言模型(LLM)技术(如GPT-4)的进展提高了所提出解决方案的准确性。然而,由于最先进的LLM尚未开放进行微调,因此最近在这一领域的研究集中在创建能够在不修改基础LLM的情况下实现复杂的自然语言到SQL(NL-to-SQL)场景的检索增强生成(RAG)算法。

上周,OpenAI开放了GPT-3.5-turbo供微调使用。在本文中,我们将微调自己的NL-to-SQL模型,并将其性能与最先进的RAG方法进行比较。我们将使用耶鲁大学的Spider数据集作为测试基准。

以下是来自Spider数据集的两个示例:样例。通过简单的处理,我们可以从这个数据集获得以下训练数据:

javascript 复制代码
[
  {
    "query": "SELECT count(*) FROM singer",
    "question": "有多少歌手?"
  },
  {
    "query": "SELECT count(*) FROM singer",
    "question": "歌手的总人数是多少?"
  }
]

准备训练数据集

对于微调GPT-3.5-Turbo,首先要做的是创建和上传训练数据集。由于GPT-3.5-Turbo是一个ChatModel,因此此数据集必须使用以下格式,并被上传为JSON文件。

javascript 复制代码
{"messages": [{"role": "system", "content": "system_prompt"}, {"role": "user", "content": "user_prompt"}, {"role": "assistant", "content": "assistant_prompt"}]}
{"messages": [{"role": "system", "content": "system_prompt"}, {"role": "user", "content": "user_prompt"}, {"role": "assistant", "content": "assistant_prompt"}]}
{"messages": [{"role": "system", "content": "system_prompt"}, {"role": "user", "content": "user_prompt"}, {"role": "assistant", "content": "assistant_prompt"}]}

创建训练数据集

一个NL-to-SQL任务的定义如下:**给定一个问题和数据库,确定一个SQL查询,当对数据库执行该查询时,返回一个结果集,可以回答这个问题。**对于如何更好地提示LLMs执行此任务,研究人员探索了各种方法,并普遍认为提示需要包括指令组件、Data Schema的详细信息、关于数据内容、一组任务特定的演示以及实际的问题。

给定ChatModel训练数据的格式,上述元素必须在以下三个提示中呈现:

  • system_prompt -- 包含指令、Data Schema和数据库内容

  • user_prompt -- 包含自然语言问题

  • assistant_prompt -- 包含SQL查询和推理步骤

让我们看看如何为我们的NL-to-SQL训练数据集创建每个提示。

准备 system_prompt

创建system_prompt是这个任务中最复杂的部分。至少,system_prompt需要包括:

  1. 系统指令

  2. Data Schema

  3. 数据内容

此外,对于任何实际的用例,如果有大量的表,则训练集中的样本还应该训练模型选择正确的表格用于SQL查询(即执行模式链接)。

准备 系统指令

对于指令,我们使用了以下标准提示:

javascript 复制代码
You are an assistant that is an expert in generating Sqlite SQL queries.
Having the access to database content, generate a correct Sqlite SQL query for the given question.
### Database content ###
Data Schema

对于Data Schema,文献中有许多提出的格式,但没有明确的共识,哪种格式表现最佳。我们发现以下是Data Schema的最佳表示方式:

sql 复制代码
CREATE TABLE concert (
"concert_ID" INTEGER NOT NULL,
"concert_Name" TEXT NOT NULL,
"Theme" TEXT,
"Stadium_ID" TEXT NOT NULL,
"Year" TEXT,
PRIMARY KEY ("concert_ID"),
FOREIGN KEY("Stadium_ID")
REFERENCES stadium ("Stadium_ID")
)
CREATE TABLE singer (
"Singer_ID" INTEGER NOT NULL,
"Name" TEXT,
"Country" TEXT NOT NULL,
"Song_Name" TEXT NOT NULL,
"Song_release_year" TEXT,
"Age" INTEGER,
"Is_male" BOOLEAN NOT NULL,
PRIMARY KEY ("Singer_ID")
)
数据内容

经过多次实验,我们发现以下模板在最佳的训练模型数据内容方面表现最好:

javascript 复制代码
/*
Columns in concert and 3 examples in each column for the high cardinality columns :
concert_ID: 1025 , 1101 , 1247
concert_Name : "Fire", "Dance", "Sky"
Stadium_ID : 9, 10, 11
*/
/*
Columns in concert and all categories for the low cardinality columns :
Theme : " ROCK ", " POP ", " HIP-HOP "
Year : 2022, 2021, 2023, 2020
*/
/*
Columns in singer and 3 examples in each column for the high cardinality columns :
Singer_ID : 10235 , 110231 , 1242447
Name : "Jordan", "Gabriel", "Tiffany"
Country : "Iran", "India", "Canada"
Song_Name : "dance in the fire", "rain", "sky"
Age : 19, 20, 21
*/
/*
Columns in singer and all categories for the low cardinality columns :
Is_male : "MALE", "FEMALE",
Song_release_year : 2022, 2021, 2023, 2020
*/

数据库内容中的一个重要元素是如何识别分类(低基数)列。区分低基数和高基数列的阈值取决于要微调的大型语言模型(LLM)的上下文窗口大小。给定GPT-3.5-turbo的4096令牌上下文窗口,我们确定20个令牌是低基数和高基数列之间适当的阈值。

模式链接

为了为我们训练集创建正确的system_prompt,需要以这样的方式提供样本,以便训练模型在数据库上正确执行模式链接。为此,我们采用了以下启发式方法:对于每个单独的NL <> SQL样本,我们除了正确的表之外,还随机选择了数据库中的其他表,直到达到4000个令牌的上下文窗口限制为止。为了减少位置信息的影响,我们进一步随机化了表的顺序。简而言之,每个system_prompt包括相关表的模式和内容与其他不相关的表混合在一起,帮助训练模型选择查询的正确表。

现在,我们将所有这些放在一起,构建我们的system_prompt。

对于来自Spider的以下示例:

javascript 复制代码
question:"How many heads of the departments are older than 56?"
SQL: "SELECT count(*) FROM head WHERE age > 56"

system_prompt将是

sql 复制代码
You are an assistant that is an expert in generating Sqlite SQL queries.
Having the access to database content, generate a correct Sqlite SQL query for the given question.
### Database content ###CREATE TABLE trip (
id INTEGER, duration INTEGER,
start_date TEXT,
start_station_name TEXT,
start_station_id INTEGER,
end_date TEXT,
end_station_name TEXT,
end_station_id INTEGER,
bike_id INTEGER,
subscription_type TEXT,
zip_code INTEGER,
PRIMARY KEY (id)
)
/* Columns in trip and 3 examples in each column for high cardinality columns :
id : 900645, 900752, 900524
duration : 1131, 2146, 1155
start_date : 8/21/2015 17:39, 8/21/2015 17:03, 8/21/2015 17:16
start_station_name : Howard at 2nd, 2nd at Folsom, Market at 10th
start_station_id : 56, 65, 49
end_date : 8/21/2015 17:19, 8/21/2015 18:08, 8/21/2015 17:32
end_station_name : Howard at 2nd, 2nd at Folsom, Market at 10th
end_station_id : 56, 65, 49
bike_id : 586, 56, 65
zip_code : 94070, 94530, 94040--1724
*/
/* Columns in trip and all categories for low cardinality columns :
subscription_type : Customer, Subscriber
*/

CREATE TABLE management (
"department_ID" INTEGER,
"head_ID" INTEGER,
temporary_acting TEXT,
PRIMARY KEY ("department_ID", "head_ID"),
FOREIGN KEY("head_ID") REFERENCES head ("head_ID"),
FOREIGN KEY("department_ID") REFERENCES department ("Department_ID")
)
/* Columns in management and all categories for low cardinality columns :
department_ID : 7, 15, 2, 11
head_ID : 5, 4, 6, 3, 10
temporary_acting : Yes, No
*/

CREATE TABLE department (
"Department_ID" INTEGER,
"Name" TEXT,
"Creation" TEXT,
"Ranking" INTEGER,
"Budget_in_Billions" REAL,
"Num_Employees" REAL,
PRIMARY KEY ("Department_ID")
)
/* Columns in department and 3 examples in each column for high cardinality columns :
Department_ID : 1, 13, 11
Name : Energy, Interior, Health and Human Services
Creation : 1913, 1979, 1989
Ranking : 1, 13, 11
Budget_in_Billions : 10.7, 77.6, 59.7
Num_Employees : 112557.0, 3000000.0, 235000.0
*/

...
CREATE TABLE head (
"head_ID" INTEGER,
name TEXT,
born_state TEXT,
age REAL,
PRIMARY KEY ("head_ID")
)
/* Columns in head and all categories for low cardinality columns :
head_ID : 1, 2, 5, 7, 8, 4, 6, 3, 10, 9
name : Jeff Maggert, Pádraig Harrington, Billy Mayfair, K. J. Choi, Dudley Hart, Sergio García, Stewart Cink, Tiger Woods, Nick Faldo, Franklin Langham
born_state : Delaware, Connecticut, Alabama, California, Florida
age : 69.0, 67.0, 68.0, 53.0, 56.0, 52.0, 50.0, 43.0
*/

...

user_prompt

用户提示很简单,每个Spider样本的用户问题。例如:

sql 复制代码
How many heads of the departments are older than 56?

assistant_prompt

助理提示也很简单,包含了来自Spider的相关SQL查询和找到正确列和正确表的推理步骤。为了构建推理步骤,我们只需提取在SQL查询中使用的表和列。例如:

sql 复制代码
To construct the query, I'll be working with the following tables: head.
From these tables, I'll be using the following columns: age.
The SQL query I'll be generating is:
SELECT count(*) FROM head WHERE age > 56

最终的数据格式

javascript 复制代码
{
  "messages": [
    {
      "role": "system",
      "content": "\nYou are an assistant that is an expert in generating sqlite SQL queries.\nHaving the access to database content, generate a correct sqlite SQL query for the given question.\n### Database content ###\n        \nCREATE TABLE trip (\n\tid INTEGER, \n\tduration INTEGER, \n\tstart_date TEXT, \n\tstart_station_name TEXT, \n\tstart_station_id INTEGER, \n\tend_date TEXT, \n\tend_station_name TEXT, \n\tend_station_id INTEGER, \n\tbike_id INTEGER, \n\tsubscription_type TEXT, \n\tzip_code INTEGER, \n\tPRIMARY KEY (id)\n)\n/*\nColumns in trip and 3 examples in each column for high cardinality columns :\nid : 900645, 900752, 900524\nduration : 1131, 2146, 1155\nstart_date : 8/21/2015 17:39, 8/21/2015 17:03, 8/21/2015 17:16\nstart_station_name : Howard at 2nd, 2nd at Folsom, Market at 10th\nstart_station_id : 56, 65, 49\nend_date : 8/21/2015 17:19, 8/21/2015 18:08, 8/21/2015 17:32\nend_station_name : Howard at 2nd, 2nd at Folsom, Market at 10th\nend_station_id : 56, 65, 49\nbike_id : 586, 56, 65\nzip_code : 94070, 94530, 94040-1724\n*/\n/*\nColumns in trip and all categories for low cardinality columns :\nsubscription_type : Customer, Subscriber\n*/\n \nCREATE TABLE \"Problems\" (\n\tproblem_id INTEGER, \n\tproduct_id INTEGER NOT NULL, \n\tclosure_authorised_by_staff_id INTEGER NOT NULL, \n\treported_by_staff_id INTEGER NOT NULL, \n\tdate_problem_reported DATETIME NOT NULL, \n\tdate_problem_closed DATETIME, \n\tproblem_description VARCHAR(255), \n\tother_problem_details VARCHAR(255), \n\tPRIMARY KEY (problem_id), \n\tFOREIGN KEY(reported_by_staff_id) REFERENCES \"Staff\" (staff_id), \n\tFOREIGN KEY(product_id) REFERENCES \"Product\" (product_id), \n\tFOREIGN KEY(closure_authorised_by_staff_id) REFERENCES \"Staff\" (staff_id)\n)\n/*\nColumns in Problems and 3 examples in each column for high cardinality columns :\nproblem_id : 1, 13, 11\nclosure_authorised_by_staff_id : 1, 13, 2\ndate_problem_reported : 1995-05-14 08:32:56, 1988-11-07 16:09:31, 1986-11-13 07:30:55\ndate_problem_closed : 1974-09-20 13:42:19, 1997-10-18 20:09:57, 2004-06-20 01:08:25\nproblem_description : d, i, s\n*/\n/*\nColumns in Problems and all categories for low cardinality columns :\nproduct_id : 1, 13, 2, 5, 7, 8, 4, 6, 15\nreported_by_staff_id : 1, 13, 11, 2, 5, 7, 4, 14, 10\nother_problem_details : f, m, i, s, k, l, p, v, c\n*/\n \nCREATE TABLE management (\n\t\"department_ID\" INTEGER, \n\t\"head_ID\" INTEGER, \n\ttemporary_acting TEXT, \n\tPRIMARY KEY (\"department_ID\", \"head_ID\"), \n\tFOREIGN KEY(\"head_ID\") REFERENCES head (\"head_ID\"), \n\tFOREIGN KEY(\"department_ID\") REFERENCES department (\"Department_ID\")\n)\n/*\nColumns in management and all categories for low cardinality columns :\ndepartment_ID : 7, 15, 2, 11\nhead_ID : 5, 4, 6, 3, 10\ntemporary_acting : Yes, No\n*/\n \nCREATE TABLE category (\n\tcategory_id INTEGER NOT NULL, \n\tname VARCHAR(25) NOT NULL, \n\tlast_update TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL, \n\tPRIMARY KEY (category_id)\n)\n/*\nColumns in category and 3 examples in each column for high cardinality columns :\ncategory_id : 1, 16, 13\nname : Family, Sci-Fi, Action\n*/\n/*\nColumns in category and all categories for low cardinality columns :\nlast_update : 2006-02-15 04:46:27\n*/\n \nCREATE TABLE ship (\n\t\"Ship_ID\" INTEGER, \n\t\"Name\" TEXT, \n\t\"Type\" TEXT, \n\t\"Nationality\" TEXT, \n\t\"Tonnage\" INTEGER, \n\tPRIMARY KEY (\"Ship_ID\")\n)\n/*\nColumns in ship and all categories for low cardinality columns :\nShip_ID : 1, 2, 5, 7, 8, 4, 6, 3\nName : Clan McTavish, Farringford, Appam, Author, Dromonby, Corbridge, Trader, Ariadne\nType : Battle ship, Cargo ship\nNationality : United States, United Kingdom\nTonnage : 3035, 3146, 7781, 3496, 3687, 5816, 3627, 3608\n*/\n \nCREATE TABLE member_attendance (\n\t\"Member_ID\" INTEGER, \n\t\"Performance_ID\" INTEGER, \n\t\"Num_of_Pieces\" INTEGER, \n\tPRIMARY KEY (\"Member_ID\", \"Performance_ID\"), \n\tFOREIGN KEY(\"Performance_ID\") REFERENCES performance (\"Performance_ID\"), \n\tFOREIGN KEY(\"Member_ID\") REFERENCES member (\"Member_ID\")\n)\n/*\nColumns in member_attendance and all categories for low cardinality columns :\nMember_ID : 1, 11, 2, 5, 7, 4, 3\nPerformance_ID : 1, 2, 4, 6, 3\nNum_of_Pieces : 1, 2, 4, 3\n*/\n \nCREATE TABLE department (\n\t\"Department_ID\" INTEGER, \n\t\"Name\" TEXT, \n\t\"Creation\" TEXT, \n\t\"Ranking\" INTEGER, \n\t\"Budget_in_Billions\" REAL, \n\t\"Num_Employees\" REAL, \n\tPRIMARY KEY (\"Department_ID\")\n)\n/*\nColumns in department and 3 examples in each column for high cardinality columns :\nDepartment_ID : 1, 13, 11\nName : Energy, Interior, Health and Human Services\nCreation : 1913, 1979, 1989\nRanking : 1, 13, 11\nBudget_in_Billions : 10.7, 77.6, 59.7\nNum_Employees : 112557.0, 3000000.0, 235000.0\n*/\n\n \nCREATE TABLE chip_model (\n\t\"Model_name\" TEXT, \n\t\"Launch_year\" REAL, \n\t\"RAM_MiB\" REAL, \n\t\"ROM_MiB\" REAL, \n\t\"Slots\" TEXT, \n\t\"WiFi\" TEXT, \n\t\"Bluetooth\" TEXT, \n\tPRIMARY KEY (\"Model_name\")\n)\n/*\nColumns in chip_model and 3 examples in each column for high cardinality columns :\nModel_name : X30 mid-range, X50 Advanced, X51 mid-range\n*/\n/*\nColumns in chip_model and all categories for low cardinality columns :\nLaunch_year : 2002.0, 2005.0, 2004.0, 2003.0\nRAM_MiB : 32.0, 64.0\nROM_MiB : 48.0, 256.0, 128.0, 32.0, 64.0\nSlots : 1CFII,1SD, 1SD\nWiFi : 802.11b, No\nBluetooth : 1.2, Yes, No, 1.1\n*/\n \nCREATE TABLE head (\n\t\"head_ID\" INTEGER, \n\tname TEXT, \n\tborn_state TEXT, \n\tage REAL, \n\tPRIMARY KEY (\"head_ID\")\n)\n/*\nColumns in head and all categories for low cardinality columns :\nhead_ID : 1, 2, 5, 7, 8, 4, 6, 3, 10, 9\nname : Jeff Maggert, Pádraig Harrington, Billy Mayfair, K. J. Choi, Dudley Hart, Sergio García, Stewart Cink, Tiger Woods, Nick Faldo, Franklin Langham\nborn_state : Delaware, Connecticut, Alabama, California, Florida\nage : 69.0, 67.0, 68.0, 53.0, 56.0, 52.0, 50.0, 43.0\n*/\n \nCREATE TABLE mountain (\n\t\"Mountain_ID\" INTEGER, \n\t\"Name\" TEXT, \n\t\"Height\" REAL, \n\t\"Prominence\" REAL, \n\t\"Range\" TEXT, \n\t\"Country\" TEXT, \n\tPRIMARY KEY (\"Mountain_ID\")\n)\n/*\nColumns in mountain and all categories for low cardinality columns :\nMountain_ID : 1, 2, 5, 7, 4, 6, 3\nName : Ngaliema / Mt Stanley (Margherita Pk), Mount Kenya (Lenana), Kibo (Uhuru Pk), Ngaliema / Mt Stanley (Savoia Pk), Mount Kenya (Batian), Duwoni / Mt Speke (Vittorio Emanuele Pk), Mawenzi (Hans Meyer Pk)\nHeight : 5109.0, 5199.0, 5895.0, 4890.0, 4985.0, 4977.0, 5148.0\nProminence : 720.0, 850.0, 3951.0, 3825.0, 130.0, 5885.0, 110.0\nRange : Kilimanjaro, Mount Kenya, Rwenzori\nCountry : DR Congo Uganda, Uganda, Tanzania, Kenya\n*/\n \nCREATE TABLE \"Restaurant_Type\" (\n\t\"ResTypeID\" INTEGER, \n\t\"ResTypeName\" VARCHAR(40), \n\t\"ResTypeDescription\" VARCHAR(100), \n\tPRIMARY KEY (\"ResTypeID\")\n)\n/*\nColumns in Restaurant_Type and all categories for low cardinality columns :\nResTypeID : 1, 2\nResTypeName : Sandwich, Stir-fry\nResTypeDescription : Classic Chinese cooking., Simplest there is.\n*/\n \nCREATE TABLE farm_competition (\n\t\"Competition_ID\" INTEGER, \n\t\"Year\" INTEGER, \n\t\"Theme\" TEXT, \n\t\"Host_city_ID\" INTEGER, \n\t\"Hosts\" TEXT, \n\tPRIMARY KEY (\"Competition_ID\"), \n\tFOREIGN KEY(\"Host_city_ID\") REFERENCES city (\"City_ID\")\n)\n/*\nColumns in farm_competition and all categories for low cardinality columns :\nCompetition_ID : 1, 2, 5, 4, 6, 3\nYear : 2004, 2013, 2005, 2006, 2003, 2002\nTheme : MTV Cube, Valentine's Day, Codehunters, Carnival M is back!, Aliens, MTV Asia Aid\nHost_city_ID : 1, 2, 5, 4, 3\nHosts : Mandy Moore and Ronan Keating, Alicia Keys, Shaggy and Coco Lee, Leehom Wang and Kelly Rowland, Miley Cyrus Jared Leto and Karen Mok, Vanness Wu and Michelle Branch\n*/\n \nCREATE TABLE \"Country\" (\n\tid INTEGER, \n\tname TEXT, \n\tPRIMARY KEY (id)\n)\n/*\nColumns in Country and 3 examples in each column for high cardinality columns :\nid : 1, 19694, 7809\nname : Scotland, Italy, Spain\n*/\n\n \nCREATE TABLE artist (\n\tartist_name TEXT(50) NOT NULL, \n\tcountry TEXT(20), \n\tgender TEXT(20), \n\tpreferred_genre TEXT(50), \n\tCONSTRAINT a_name PRIMARY KEY (artist_name), \n\tFOREIGN KEY(preferred_genre) REFERENCES genre (g_name) ON DELETE CASCADE\n)\n/*\nColumns in artist and all categories for low cardinality columns :\nartist_name : Prity, Michel, Topu, Shrikanta, Enrique, Farida\ncountry : India, UK, USA, Bangladesh\ngender : Male, Female\npreferred_genre : tagore, folk, modern, nazrul, blues, pop\n*/\n \nCREATE TABLE \"Organizations\" (\n\torganization_id INTEGER NOT NULL, \n\tparent_organization_id INTEGER, \n\torganization_details VARCHAR(255), \n\tPRIMARY KEY (organization_id)\n)\n/*\nColumns in Organizations and all categories for low cardinality columns :\norganization_id : 7, 8, 10\nparent_organization_id : 7, 8\norganization_details : Denesik and Sons Party, Reinger, Hudson and Nolan Group, Robel-Schulist Group\n*/\n \nCREATE TABLE school (\n\t\"School_ID\" INTEGER, \n\t\"School\" TEXT, \n\t\"Location\" TEXT, \n\t\"Enrollment\" REAL, \n\t\"Founded\" REAL, \n\t\"Denomination\" TEXT, \n\t\"Boys_or_Girls\" TEXT, \n\t\"Day_or_Boarding\" TEXT, \n\t\"Year_Entered_Competition\" REAL, \n\t\"School_Colors\" TEXT, \n\tPRIMARY KEY (\"School_ID\")\n)\n/*\nColumns in school and all categories for low cardinality columns :\nSchool_ID : 1, 2, 5, 4, 6, 3\nSchool : St Aloysius' College, Cranbrook School, Waverley College, Knox Grammar School, Barker College, Trinity Grammar School\nLocation : Hornsby, Summer Hill, Waverley, Bellevue Hill, Milsons Point, Wahroonga\nEnrollment : 1000.0, 1850.0, 2200.0, 1200.0, 2300.0, 1430.0\nFounded : 1918.0, 1924.0, 1913.0, 1879.0, 1903.0, 1890.0\nDenomination : Catholic, Uniting Church, Anglican\nBoys_or_Girls : Boys only to Yr 9 Co-ed Year 10 to 12, Boys\nDay_or_Boarding : Day, Day & Boarding\nYear_Entered_Competition : 1944.0, 1929.0\nSchool_Colors : Royal Blue and Gold, Black & Blue, Red, White & Blue, Red & Blue, Green and White\n*/\n \nCREATE TABLE flight (\n\tid INTEGER, \n\t\"Vehicle_Flight_number\" TEXT, \n\t\"Date\" TEXT, \n\t\"Pilot\" TEXT, \n\t\"Velocity\" REAL, \n\t\"Altitude\" REAL, \n\tairport_id INTEGER, \n\tcompany_id INTEGER, \n\tPRIMARY KEY (id), \n\tFOREIGN KEY(company_id) REFERENCES operate_company (id), \n\tFOREIGN KEY(airport_id) REFERENCES airport (id)\n)\n/*\nColumns in flight and 3 examples in each column for high cardinality columns :\nid : 1, 13, 11\nVehicle_Flight_number : M2-F1 #14, M2-F1 #61, M2-F1 #0\nDate : July 16, 1965, May 19, 1964, March 28, 1966\n*/\n/*\nColumns in flight and all categories for low cardinality columns :\nPilot : Thompson, Peterson\nVelocity : 240.0, 135.0\nAltitude : 3650.0, 0.0\nairport_id : 1, 2, 5, 8, 4, 6, 3, 9\ncompany_id : 1, 13, 11, 2, 5, 7, 4, 6, 3, 9\n*/\n \nCREATE TABLE \"Type_Of_Restaurant\" (\n\t\"ResID\" INTEGER, \n\t\"ResTypeID\" INTEGER, \n\tFOREIGN KEY(\"ResID\") REFERENCES \"Restaurant\" (\"ResID\"), \n\tFOREIGN KEY(\"ResTypeID\") REFERENCES \"Restaurant_Type\" (\"ResTypeID\")\n)\n/*\nColumns in Type_Of_Restaurant and all categories for low cardinality columns :\nResID : 1, 2\nResTypeID : 1, 2\n*/\n \nCREATE TABLE journalist (\n\t\"journalist_ID\" INTEGER, \n\t\"Name\" TEXT, \n\t\"Nationality\" TEXT, \n\t\"Age\" TEXT, \n\t\"Years_working\" INTEGER, \n\tPRIMARY KEY (\"journalist_ID\")\n)\n/*\nColumns in journalist and 3 examples in each column for high cardinality columns :\njournalist_ID : 1, 11, 2\nName : Jack Meaney, Herbert Swindells, Jackie Waring\n*/\n/*\nColumns in journalist and all categories for low cardinality columns :\nNationality : Northern Ireland, Wales, England\nAge : 37, 28, 25, 33, 34, 43, 27, 29\nYears_working : 1, 5, 7, 8, 21, 6, 3, 12, 10, 9\n*/\n \nCREATE TABLE list (\n\t\"LastName\" TEXT, \n\t\"FirstName\" TEXT, \n\t\"Grade\" INTEGER, \n\t\"Classroom\" INTEGER, \n\tPRIMARY KEY (\"LastName\", \"FirstName\")\n)\n/*\nColumns in list and 3 examples in each column for high cardinality columns :\nLastName : HOUTCHENS, GELL, FLACHS\nFirstName :  RAY,  EMILE,  PATRINA\nClassroom : 109, 110, 106\n*/\n/*\nColumns in list and all categories for low cardinality columns :\nGrade : 1, 2, 5, 4, 6, 3, 0\n*/\n"
    },
    {
      "role": "user",
      "content": "How many heads of the departments are older than 56 ?"
    },
    {
      "role": "assistant",
      "content": "\nTo construct the query, I'll be working with the following tables: head.\nFrom these tables, I'll be using the following columns: age.\nThe SQL query I'll be generating is:\nSELECT count(*) FROM head WHERE age  >  56"
    }
  ]
}
相关推荐
hunteritself12 小时前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别
2402_8713219518 小时前
MATLAB方程组
gpt·学习·线性代数·算法·matlab
xwm10001 天前
【如何用更少的数据作出更好的决策】-gpt生成
gpt
学习前端的小z1 天前
【AIGC】如何准确引导ChatGPT,实现精细化GPTs指令生成
人工智能·gpt·chatgpt·aigc
菜鸟小码农的博客1 天前
昇思MindSpore第四课---GPT实现情感分类
gpt·分类·数据挖掘
bingbingyihao1 天前
代码辅助工具 GPT / Cursor
android·java·gpt
hunteritself3 天前
ChatGPT Search VS Kimi探索版:AI搜索哪家强?!
人工智能·gpt·chatgpt·openai·xai
qq_339191144 天前
笔记本run个llm, 本地如何启动大模型,大模型ubuntu 3b llm启动,llm部署 ollama 黑盒run大模型
gpt
新知图书5 天前
PyTorch深度学习与企业级项目实战-预训练语言模型GPT
人工智能·gpt·语言模型
知来者逆6 天前
讨论大语言模型在学术文献应用中的未来与所带来的可能性和担忧
人工智能·gpt·语言模型·自然语言处理·chatgpt·llm·gpt-4v