数据分析基础之《pandas(1)—pandas介绍》

一、pandas介绍

1、2008年Wes McKinney(韦斯·麦金尼)开发出的库

2、专门用于数据分析的开源python库

3、以numpy为基础,借力numpy模块在计算方面性能高的优势

4、基于matplotlib能够简便的画图

5、独特的数据结构

6、也是三个单词组合而成:panel + data + analysis

面板数据 - 来源于计量经济学,通常用来存储三维的数据

二、为什么使用pandas

1、numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas用在什么地方

2、便捷的数据处理能力

3、读取文件方便

4、封装了matplotlib、numpy的画图和计算

三、核心数据结构

1、pandas三大数据结构

DataFrame、Panel、Series

四、DataFrame

1、DataFrame结构

既有行索引,又有列索引的二维数组

2、如何创建更有意义的数据

python 复制代码
import numpy as np
# 创建一个符合正态分布的10个股票5天的涨跌幅数据
stock_change = np.random.normal(0, 1, (10, 5))

stock_change

import pandas as pd
# 加上行列索引
pd.DataFrame(stock_change)

# 添加行索引
stock = ["股票%s" %str(i) for i in range (10)]

pd.DataFrame(stock_change, index=stock)

# 添加列索引
data = pd.date_range(start="20180101", periods=5, freq="B")

data

pd.DataFrame(stock_change, index=stock, columns=data)

3、DataFrame对象既有行索引,又有列索引

行索引:表明不同行,横向索引,叫index

列索引:表明不同列,纵向索引,叫columns

4、DataFrame的属性

常用属性:

(1)shape

(2)index:DataFrame的行索引列表

(3)columns:DataFrame的列索引列表

(4)values:直接获取其中array的值(排除行索引列索引后的值,就是ndarray)

(5)T:行列的转置

常用方法:

head():前几行

tail():后几行

相关推荐
预测模型的开发与应用研究3 小时前
数据分析的AI+流程(个人经验)
人工智能·数据挖掘·数据分析
代码轨迹12 小时前
使用DeepSeek+本地知识库,尝试从0到1搭建高度定制化工作流(数据分析篇)
人工智能·数据分析·deepseek
赵钰老师15 小时前
【科研创新与智能化转型】AI智能体开发与大语言模型的本地化部署、优化技术
人工智能·语言模型·自然语言处理·chatgpt·数据分析
数模竞赛Paid answer16 小时前
2021年全国研究生数学建模竞赛华为杯E题信号干扰下的超宽带(UWB)精确定位问题求解全过程文档及程序
数学建模·数据分析·研究生数学建模·华为杯数学建模
行业分析QY20 小时前
汽车迷你Fakra连接器市场报告:未来几年年复合增长率CAGR为21.3%
数据分析
行业分析QY20 小时前
汽车同轴供电(PoC)电感器市场报告:未来几年年复合增长率CAGR为14.3%
数据分析
小小小菜狗-2 天前
问卷数据分析|SPSS实操之量表描述性统计
数据挖掘·数据分析·spss
web135085886352 天前
Python大数据可视化:基于Python对B站热门视频的数据分析与研究_flask+hive+spider
python·信息可视化·数据分析
AutoMQ4 天前
使用 AutoMQ 和 Tinybird 分析用户网购行为
大数据·数据分析·kafka·云计算·消息