数据分析基础之《pandas(1)—pandas介绍》

一、pandas介绍

1、2008年Wes McKinney(韦斯·麦金尼)开发出的库

2、专门用于数据分析的开源python库

3、以numpy为基础,借力numpy模块在计算方面性能高的优势

4、基于matplotlib能够简便的画图

5、独特的数据结构

6、也是三个单词组合而成:panel + data + analysis

面板数据 - 来源于计量经济学,通常用来存储三维的数据

二、为什么使用pandas

1、numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas用在什么地方

2、便捷的数据处理能力

3、读取文件方便

4、封装了matplotlib、numpy的画图和计算

三、核心数据结构

1、pandas三大数据结构

DataFrame、Panel、Series

四、DataFrame

1、DataFrame结构

既有行索引,又有列索引的二维数组

2、如何创建更有意义的数据

python 复制代码
import numpy as np
# 创建一个符合正态分布的10个股票5天的涨跌幅数据
stock_change = np.random.normal(0, 1, (10, 5))

stock_change

import pandas as pd
# 加上行列索引
pd.DataFrame(stock_change)

# 添加行索引
stock = ["股票%s" %str(i) for i in range (10)]

pd.DataFrame(stock_change, index=stock)

# 添加列索引
data = pd.date_range(start="20180101", periods=5, freq="B")

data

pd.DataFrame(stock_change, index=stock, columns=data)

3、DataFrame对象既有行索引,又有列索引

行索引:表明不同行,横向索引,叫index

列索引:表明不同列,纵向索引,叫columns

4、DataFrame的属性

常用属性:

(1)shape

(2)index:DataFrame的行索引列表

(3)columns:DataFrame的列索引列表

(4)values:直接获取其中array的值(排除行索引列索引后的值,就是ndarray)

(5)T:行列的转置

常用方法:

head():前几行

tail():后几行

相关推荐
生信大杂烩2 小时前
Scanpy可视化技巧--UMAP图优化
数据分析
Aloudata技术团队3 小时前
Aloudata Agent :基于 NoETL 明细语义层的分析决策智能体
数据库·数据分析·数据可视化
随缘而动,随遇而安4 小时前
第五十二篇 浅谈ETL系统设计
大数据·数据仓库·数据分析·数据库开发·数据库架构
杨超越luckly5 小时前
HTML应用指南:利用GET请求获取微博签到位置信息
大数据·信息可视化·数据分析·html·html5
云天徽上14 小时前
【数据可视化-21】水质安全数据可视化:探索化学物质与水质安全的关联
安全·机器学习·信息可视化·数据挖掘·数据分析
谁家有个大人15 小时前
Python数据清洗笔记(上)
开发语言·笔记·python·数据分析
Jayen H16 小时前
数据分析:用Excel做周报
数据挖掘·数据分析
袁袁袁袁满19 小时前
《巧用DeepSeek快速搞定数据分析》书籍分享
数据挖掘·数据分析
穆易青19 小时前
2025.04.23【探索工具】| STEMNET:高效数据排序与可视化的新利器
python·信息可视化·数据分析·ordering·visualisation
lilye661 天前
精益数据分析(16/126):掌握关键方法,探寻创业真谛
人工智能·数据挖掘·数据分析