数据分析基础之《pandas(1)—pandas介绍》

一、pandas介绍

1、2008年Wes McKinney(韦斯·麦金尼)开发出的库

2、专门用于数据分析的开源python库

3、以numpy为基础,借力numpy模块在计算方面性能高的优势

4、基于matplotlib能够简便的画图

5、独特的数据结构

6、也是三个单词组合而成:panel + data + analysis

面板数据 - 来源于计量经济学,通常用来存储三维的数据

二、为什么使用pandas

1、numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas用在什么地方

2、便捷的数据处理能力

3、读取文件方便

4、封装了matplotlib、numpy的画图和计算

三、核心数据结构

1、pandas三大数据结构

DataFrame、Panel、Series

四、DataFrame

1、DataFrame结构

既有行索引,又有列索引的二维数组

2、如何创建更有意义的数据

python 复制代码
import numpy as np
# 创建一个符合正态分布的10个股票5天的涨跌幅数据
stock_change = np.random.normal(0, 1, (10, 5))

stock_change

import pandas as pd
# 加上行列索引
pd.DataFrame(stock_change)

# 添加行索引
stock = ["股票%s" %str(i) for i in range (10)]

pd.DataFrame(stock_change, index=stock)

# 添加列索引
data = pd.date_range(start="20180101", periods=5, freq="B")

data

pd.DataFrame(stock_change, index=stock, columns=data)

3、DataFrame对象既有行索引,又有列索引

行索引:表明不同行,横向索引,叫index

列索引:表明不同列,纵向索引,叫columns

4、DataFrame的属性

常用属性:

(1)shape

(2)index:DataFrame的行索引列表

(3)columns:DataFrame的列索引列表

(4)values:直接获取其中array的值(排除行索引列索引后的值,就是ndarray)

(5)T:行列的转置

常用方法:

head():前几行

tail():后几行

相关推荐
wang_yb12 分钟前
面积图的奇妙变形:流图与地平线图
数据分析·databook
qq_22589174661 小时前
基于Python+Django豆瓣图书数据可视化分析推荐系统 可视化 协同过滤算法 情感分析 爬虫
爬虫·python·算法·信息可视化·数据分析·django
Volunteer Technology1 小时前
文本数据分析(二)
python·数据挖掘·数据分析
十三画者1 小时前
【文献分享】OTMODE一种基于最优传输理论的框架,用于在单细胞多组学数据中识别差异特征
数据挖掘·数据分析·数据可视化
-To be number.wan12 小时前
Python数据分析:numpy数值计算基础
开发语言·python·数据分析
醉舞经阁半卷书114 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
老徐电商数据笔记14 小时前
BI工具与数据分析平台:数据价值呈现的最后一公里
数据库·数据挖掘·数据分析·bi·bi选型思考
醉舞经阁半卷书117 小时前
Matplotlib从入门到精通
python·数据分析·matplotlib
电商API&Tina19 小时前
电商API接口的应用与简要分析||taobao|jd|微店
大数据·python·数据分析·json
BEOL贝尔科技1 天前
通过采集器监测环境的温湿度如果这个采集器连上网络接入云平台会发生什么呢?
网络·人工智能·数据分析