数据分析基础之《pandas(1)—pandas介绍》

一、pandas介绍

1、2008年Wes McKinney(韦斯·麦金尼)开发出的库

2、专门用于数据分析的开源python库

3、以numpy为基础,借力numpy模块在计算方面性能高的优势

4、基于matplotlib能够简便的画图

5、独特的数据结构

6、也是三个单词组合而成:panel + data + analysis

面板数据 - 来源于计量经济学,通常用来存储三维的数据

二、为什么使用pandas

1、numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas用在什么地方

2、便捷的数据处理能力

3、读取文件方便

4、封装了matplotlib、numpy的画图和计算

三、核心数据结构

1、pandas三大数据结构

DataFrame、Panel、Series

四、DataFrame

1、DataFrame结构

既有行索引,又有列索引的二维数组

2、如何创建更有意义的数据

python 复制代码
import numpy as np
# 创建一个符合正态分布的10个股票5天的涨跌幅数据
stock_change = np.random.normal(0, 1, (10, 5))

stock_change

import pandas as pd
# 加上行列索引
pd.DataFrame(stock_change)

# 添加行索引
stock = ["股票%s" %str(i) for i in range (10)]

pd.DataFrame(stock_change, index=stock)

# 添加列索引
data = pd.date_range(start="20180101", periods=5, freq="B")

data

pd.DataFrame(stock_change, index=stock, columns=data)

3、DataFrame对象既有行索引,又有列索引

行索引:表明不同行,横向索引,叫index

列索引:表明不同列,纵向索引,叫columns

4、DataFrame的属性

常用属性:

(1)shape

(2)index:DataFrame的行索引列表

(3)columns:DataFrame的列索引列表

(4)values:直接获取其中array的值(排除行索引列索引后的值,就是ndarray)

(5)T:行列的转置

常用方法:

head():前几行

tail():后几行

相关推荐
databook2 小时前
拒绝“凭感觉”:用回归分析看透数据背后的秘密
python·数据挖掘·数据分析
大数据魔法师9 小时前
昭通天气数据分析与挖掘(三)- 昭通天气数据可视化分析
信息可视化·数据分析·finebi
十三画者9 小时前
【文献分享】vConTACT3机器学习能够实现可扩展且系统的病毒分类体系的构建
人工智能·算法·机器学习·数据挖掘·数据分析
小艳加油9 小时前
R语言生态环境数据分析:从基础操作到水文、地形、物种多度、空间聚类、排序与生物多样性的系统应用
数据分析·r语言·生态环境
Serendipity_Carl9 小时前
京东手机销售数据分析: 从数据清洗到可视化仪表盘
python·数据分析·pandas·pyecharts
阿里云大数据AI技术1 天前
# Hologres Dynamic Table:高效增量刷新,构建实时统一数仓的核心利器
人工智能·数据分析
沃达德软件1 天前
智能警务视频侦查系统
大数据·人工智能·数据挖掘·数据分析·实时音视频·视频编解码
MatrixOrigin2 天前
在数据库里玩“平行宇宙”:MatrixOne Data Branch 让数据也拥有Git 的分支/合并/对比/回滚(含跨集群同步)
git·sql·数据分析
思迈特Smartbi2 天前
思迈特软件斩获鲲鹏应用创新大赛(华南赛区) “最佳原生创新奖”
人工智能·ai·数据分析·bi·商业智能
码银2 天前
【数据分析】基于工作与生活平衡及寿命数据集的数据分析与可视化
数据挖掘·数据分析·生活