自然语言处理中的语言模型

知乎好文章,建议参考学习语言模型

语言模型(Language Model, LM)是用于计算或预测一系列词语(句子或文本段落)出现概率的统计模型。它们能够基于已知的词序列来预测下一个词或者评估一个句子的语言学合理性。

发展历程
  1. 统计语言模型

    • N-gram模型:基于前N-1个词预测下一个词。这种模型简单且易于实现,但面临着维度灾难和数据稀疏问题。
    • 隐马尔可夫模型(HMM):常用于语音识别和某些类型的文本处理。HMM能处理序列数据但对长期依赖关系的捕捉有限。
  2. 神经网络语言模型

    • 前馈神经网络模型:使用神经网络代替传统统计方法来预测单词序列。这些模型能够更好地处理数据稀疏性问题。
    • 循环神经网络(RNN)和长短期记忆网络(LSTM):解决了前馈网络在处理长期依赖时的不足。
    • Transformer模型:基于自注意力机制,显著提高了处理长距离依赖的能力。GPT(Generative Pre-trained Transformer)和BERT(Bidirectional Encoder Representations from Transformers)是两个典型代表。
评价指标
  1. 困惑度(Perplexity):衡量模型对测试数据的预测能力,值越低表示模型越好。
  2. BLEU分数:主要用于机器翻译评估,通过比较机器输出和人工参考翻译来评估质量。
  3. 准确率:在某些任务中,如下一个词预测,准确率直观反映了模型的性能。
应用
  1. 机器翻译:使用语言模型来生成自然、流畅的翻译文本。
  2. 语音识别:辅助识别语音信号中的词汇。
  3. 文本生成:如自动写作、聊天机器人等。
  4. 信息检索:改进搜索引擎的查询结果。
  5. 情感分析:分析和预测文本的情感倾向。
相关推荐
千宇宙航32 分钟前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
onceco1 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
天水幼麟2 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
jndingxin4 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
天水幼麟4 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
Sweet锦4 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988945 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03275 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿5 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手5 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链