Flume基础知识(九):Flume 企业开发案例之复制和多路复用

1)案例需求

使用 Flume-1 监控文件变动,Flume-1 将变动内容传递给 Flume-2,Flume-2 负责存储 到 HDFS。同时 Flume-1 将变动内容传递给 Flume-3,Flume-3 负责输出到 Local FileSystem。

2)需求分析:

3)实现步骤:

(1)准备工作

在/opt/module/flume/job 目录下创建 group1 文件夹

复制代码
[root@hadoop102 job]$ cd group1/

在/opt/module/datas/目录下创建 flume3 文件夹

复制代码
[root@hadoop102 datas]$ mkdir flume3

(2)创建 flume-file-flume.conf

配置 1 个接收日志文件的 source 和两个 channel、两个 sink,分别输送给 flume-flume-hdfs 和 flume-flume-dir。 编辑配置文件

复制代码
 [root@hadoop102 group1]$ vim flume-file-flume.conf 

添加如下内容

复制代码
# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给所有 channel
a1.sources.r1.selector.type = replicating
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
# sink 端的 avro 是一个数据发送者
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop100
a1.sinks.k1.port = 4141
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop100
a1.sinks.k2.port = 4142
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

(3)创建 flume-flume-hdfs.conf

配置上级 Flume 输出的 Source,输出是到 HDFS 的 Sink。

编辑配置文件

复制代码
[root@hadoop102 group1]$ vim flume-flume-hdfs.conf

添加如下内容

复制代码
# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
# source 端的 avro 是一个数据接收服务
a2.sources.r1.type = avro
a2.sources.r1.bind = hadoop100
a2.sources.r1.port = 4141
# Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://hadoop100:8020/flume2/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k1.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval = 30
#设置每个文件的滚动大小大概是 128M
a2.sinks.k1.hdfs.rollSize = 134217700
#文件的滚动与 Event 数量无关
a2.sinks.k1.hdfs.rollCount = 0
# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)创建 flume-flume-dir.conf

配置上级 Flume 输出的 Source,输出是到本地目录的 Sink。

编辑配置文件

复制代码
[root@hadoop102 group1]$ vim flume-flume-dir.conf 

添加如下内容

复制代码
# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop100
a3.sources.r1.port = 4142
# Describe the sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /opt/module/data/flume3
# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 1000
a3.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2

提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目 录。

(5)执行配置文件

分别启动对应的 flume 进程:flume-flume-dir,flume-flume-hdfs,flume-file-flume。

复制代码
[root@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group1/flume-flume-dir.conf
[root@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group1/flume-flume-hdfs.conf
[root@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group1/flume-file-flume.conf

(6)启动 Hadoop 和 Hive

复制代码
[root@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh 
[root@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh 
[root@hadoop102 hive]$ bin/hive hive (default)>
相关推荐
云飞云共享云桌面5 分钟前
非标自动化工厂的设计云桌面为什么要选云飞云智能共享云桌面?
大数据·运维·服务器·网络·自动化·负载均衡
做cv的小昊23 分钟前
【TJU】信息检索与分析课程笔记和练习(6)英文数据库检索—web of science
大数据·数据库·笔记·学习·全文检索
五度易链-区域产业数字化管理平台24 分钟前
基于产业大数据的产业园区精准招商解决方案:五度易链的全流程技术赋能逻辑
大数据
方渐鸿31 分钟前
【2026】记录一次大数据请求时页面整体优化过程
大数据
天远云服1 小时前
Go语言高并发实战:集成天远手机号码归属地核验API打造高性能风控中台
大数据·开发语言·后端·golang
管理快车道1 小时前
连锁零售利润增长:我的实践复盘
大数据·人工智能·零售
Elastic 中国社区官方博客1 小时前
使用 LangGraph 和 Elasticsearch 构建人机交互 Agents
大数据·人工智能·elasticsearch·搜索引擎·langchain·全文检索·人机交互
智慧化智能化数字化方案2 小时前
数据资产管理进阶——解读数据资产管理体系建设【附全文阅读】
大数据·人工智能·数据资产管理·数据资产管理体系建设·数据要素入表
城数派2 小时前
2001-2024年全球500米分辨率逐年土地覆盖类型栅格数据
大数据·人工智能·数据分析
Hubianji_092 小时前
[SPIE] 2026年计算机网络、通信工程与智能系统国际学术会议 (ISCCN 2026)
大数据·人工智能·计算机网络·国际会议·论文投稿·国际期刊