[原创][R语言]股票分析实战[8]:因子与subset的关系

[简介]

常用网名: 猪头三

出生日期: 1981.XX.XX

QQ联系: 643439947

个人网站: 80x86汇编小站 https://www.x86asm.org

编程生涯: 2001年~至今[共22年]

职业生涯: 20年

开发语言: C/C++、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python

开发工具: Visual Studio、Delphi、XCode、Eclipse、C++ Builder

技能种类: 逆向 驱动 磁盘 文件

研发领域: Windows应用软件安全/Windows系统内核安全/Windows系统磁盘数据安全/macOS应用软件安全

项目经历: 磁盘性能优化/文件系统数据恢复/文件信息采集/敏感文件监测跟踪/网络安全检测

[序言]

在股票数据分析中, "方差分析"是非常重要的技术. 那么"方差分析"就会涉及的因子. 因子的处理, 会涉及到"方差分析"的平衡性处理, 平衡 与 非平衡.

[因子 与 subset函数]

记录一个细节: 当有一个数据框, 需要进行"方差分析"时, 为了保证观测数的平衡性, 即每组分类的观测数是一样的. 尽量使用subset()函数来进行数据抽取. 而不是用 rbind()或者cbind()来做数据抽取. 这是因为subset()函数不会改变因子的数量.

[代码示例]

假如有一个数据框stock_demo包含一个Days列, 内容是周内第N天, 类型为因子, 数据如下:

1

3

4

3

2

2

2

1

3

R 复制代码
stock_demo_sub <- subset(stock_demo, Days = '3') #把因子为3的行内容提取出来并形成一个新的数据框 stock_demo_sub
table(stock_demo_sub) # 统计因子的频数. 这时你会发现, stock_demo_sub 仍然会保留所有的因子, 即 1 2 3 4

[结尾]

很多人在做"方差分析"的时候, 为什么结果不准确, 其实就是因子被破坏的问题, 导致了"方差分析"的平衡性倾向于非平衡, 在"非平衡模式"分析下, 不如"平衡模式"分析准确.

相关推荐
B站计算机毕业设计超人5 小时前
计算机毕业设计hadoop+spark股票基金推荐系统 股票基金预测系统 股票基金可视化系统 股票基金数据分析 股票基金大数据 股票基金爬虫
大数据·hadoop·python·spark·课程设计·数据可视化·推荐算法
Dusk_橙子6 小时前
在elasticsearch中,document数据的写入流程如何?
大数据·elasticsearch·搜索引擎
说私域6 小时前
社群裂变+2+1链动新纪元:S2B2C小程序如何重塑企业客户管理版图?
大数据·人工智能·小程序·开源
喝醉酒的小白8 小时前
Elasticsearch 中,分片(Shards)数量上限?副本的数量?
大数据·elasticsearch·jenkins
yuanbenshidiaos9 小时前
【大数据】机器学习----------计算机学习理论
大数据·学习·机器学习
杰克逊的日记11 小时前
HBased的原理
大数据·hbase
viperrrrrrrrrr713 小时前
大数据学习(36)- Hive和YARN
大数据·hive·学习
认知作战壳吉桔15 小时前
中国认知作战研究中心:从认知战角度分析2007年iPhone发布
大数据·人工智能·新质生产力·认知战·认知战研究中心
2301_7803567016 小时前
为医院量身定制做“旧改”| 全视通物联网智慧病房
大数据·人工智能·科技·健康医疗
我的棉裤丢了17 小时前
windows安装ES
大数据·elasticsearch·搜索引擎