007文章解读与程序——电力系统自动化EI\CSCD\北大核心《含冰蓄冷空调的冷热电联供型微网多时间尺度优化调度》已提供下载资源

👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

摘要:冷热电联供型微网(CCHP-MG)对实现能源可持续发展和构建绿色低碳社会具有重要的应用价值,而内部复杂的能源结构与设备耦合关系、可再生能源的消纳和负荷波动的平抑给其优化运行带来了挑战。文中提出含冰蓄冷空调的CCHP-MG多时间尺度优化调度模型,研究冰蓄冷空调的不同运行方式对优化调度的影响。日前计划中通过多场景描述可再生能源的不确定性,侧重于一个运行优化周期内CCHP-MG的经济运行;日内调度基于日前计划方案,根据冷热电在不同时间尺度上的相关性和互补性,提出考虑冷热负荷变化的双层滚动优化平抑模型,求解各联供设备的调整出力。仿真结果表明:冰蓄冷空调的运行方式关系到CCHP-MG的综合效益的提高;多时间尺度优化调度模型不仅可以满足用户的冷、热、电能的需求,还能有效平抑日内阶段供需侧随机性波动,实现CCHP-MG经济及稳定运行。行带来了挑战。文中提出含冰蓄冷空调的CCHP-MG多时间尺度优化调度模型,研究冰蓄冷空调的不同运行方式对优化调度的影响。日前计划中通过多场景描述可再生能源的不确定性,侧重于一个运行优化周期内CCHP-MG的经济运行;日内调度基于日前计划方案,根据冷热电在不同时间尺度上的相关性和互补性,提出考虑冷热负荷变化的双层滚动优化平抑模型,求解各联供设备的调整出力。仿真结果表明:冰蓄冷空调的运行方式关系到CCHP-MG的综合效益的提高;多时间尺度优化调度模型不仅可以满足用户的冷、热、电能的需求,还能有效平抑日内阶段供需侧随机性波动,实现CCHP-MG经济及稳定运行。

部分代码展示:

Matlab 复制代码
clc
clear all
%%
%场景法
%%% wf1 wf2 为平均值
wf1=[339,287,449,471,512,530,527,641,634,519,401,634,589,530,512,505,206,85,81,80,83,110,353,523];
wf2=[0,0,0,0,0,0,99,137,150,178,189,191,176,171,138,104,77,0,0,0,0,0,0,0];
m1=ones(24,1000);%风生成
m2=ones(24,1000);%光生成
m=ones(24,1000);%可再生生成
%%
%生成1000个场景
%%
%拉丁差立方抽样方法
%%%拉丁超级方抽样=====属于分层抽样技术(从多元参数分布中近似随机抽样的方法)------分层抽样:将抽样区间(本程序为正态分布区间)
          %按某种特性或某种规划分为不同的层,然后从不同的层中独立、随机(打乱排序,无规律抽取)
          %地抽取样本(如取10个苹果样本,按照特性把苹果树分为5类,每类随机取2个),从而保证样本的结构与总体的结构比较相近,提高估计的精度。
          
%拉丁超立方相较蒙卡,改进了采样策略能够做到较小采样规模中获得较高的采样精度。

%%lhsnorm(mu,sigma,n); mu平均值(数量a); 求解公式:u=(1/N)*(sum(样本));N为样本数目
                 %     sigma协方差矩阵(数量a*a); 求解公式: =((1/N)^3)*(sum(样本i-u)^2);   i=1至N
                 %     n抽样次数
% 表示方式1
% % c=1;%c 表示基础数据的数量
% % u1=lhsdesign(1,24);
% % u2=lhsdesign(1,24);
% % for t=1:24
% %     m1(t,:)=lhsnorm(sum(wf1(:,t))/c,u1(t)*sum(wf1(:,t))/c,1000); %拉丁超立方抽样(lhsnorm函数)方法
% %                                                                      (基于风电和光伏出力遵从正态分布normrnd(均值,标准差,n,m) n*m阶正态矩阵 ),
% %                                                                      因此lhsnorm函数的均值和标准差采用正态分布的均值,标准差
% %                                                                      依据文献,可以假定标准差与均值之间存在一定比例关系。
% %     if t>=7&&t<=17
% %         m2(t,:)=lhsnorm(sum(wf2(:,t))/c,u2(t)*sum(wf2(:,t))/c,1000);
% %     else
% %         m2(t,:)=0;
% %     end
% %   m(t,:)=m1(t,:)+m2(t,:);   
% % end
%%
% 表示方式2
for t=1:24
m1(t,:)=normrnd(wf1(t),0.12*wf1(t),1,1000);  %正态分布 normrnd(均值,标准差,n,m) n*m阶正态矩阵 
m2(t,:)=normrnd(wf2(t),0.1*wf2(t),1,1000);
m(t,:)=m1(t,:)+m2(t,:);
end
%% 场景生成图
figure()
plot(m1,'--')
hold on
plot(m2,'-')
hold on
l2=xlabel('t/h');
set(l2,'Fontname', 'Times New Roman','FontSize',20)
l3=ylabel('P/kW');
set(l3,'Fontname', 'Times New Roman','FontSize',20)
set(gca,'FontName','Times New Roman','FontSize',20)
%%
%场景削减(快速后向削减)
%原理:确定初始场景集合的一个子集,并给其重新分配场景概率,使保留场景的概率分布Q与初始场景集合的概率P之间的某种概率距离最短(即,P与Q相近),
%从而削减概率小的概率,将其加到与其场景的概率距离最近的场景上。
%%
%计算各个场景之间的概率距离
k=zeros(1000,1000);
for i=1:1000
    for j=1:1000
        if i==j
            k(i,j)=0;%K距离
        else
            k(i,j)=sqrt(sum((m(:,i)-m(:,j)).^2));
        end
    end
end
p=ones(1000,1)*0.001;%各场景初始概率
%%
%%寻找最小概率距离场景
k1=k;b2=[];k1(k1==0)=inf;
for n=1:990%削减990次,保留10个概率最高场景
[mink,index]=min(k1,[],2);%index每行最小坐标列  %mink 每行最小数值   % min(k1,[],2) 求取每行的最小值;  min(k1,[],1)求取每列的最小值
%%
%删去index2 行  %%min(mink.*p) 概率最低。。。被淘汰  
[mink11,index2]=min(mink.*p);
b=index2;
%减少一个场景
k1(b,:)=[];
k1(:,b)=[];
%%
b2=[b2;b];
%%
%新概率生成
a=index(index2);%与被削减场景的概率距离最近的场景a
%新场景概率a=原来对应场景概率a+概率重新分配系数*与此情景概率距离最近场景index2
p(a)=p(index2)+p(a);

效果图展示:

资源链接https://download.csdn.net/download/LIANG674027206/88689355​​​​​​​

👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

相关推荐
斯特凡今天也很帅8 分钟前
clickhouse常用语句汇总——持续更新中
数据库·sql·clickhouse
超级小忍1 小时前
如何配置 MySQL 允许远程连接
数据库·mysql·adb
吹牛不交税2 小时前
sqlsugar WhereIF条件的大于等于和等于查出来的坑
数据库·mysql
hshpy2 小时前
setting up Activiti BPMN Workflow Engine with Spring Boot
数据库·spring boot·后端
文牧之3 小时前
Oracle 审计参数:AUDIT_TRAIL 和 AUDIT_SYS_OPERATIONS
运维·数据库·oracle
篱笆院的狗3 小时前
如何使用 Redis 快速实现布隆过滤器?
数据库·redis·缓存
洛神灬殇4 小时前
【LLM大模型技术专题】「入门到精通系列教程」基于ai-openai-spring-boot-starter集成开发实战指南
网络·数据库·微服务·云原生·架构
小鸡脚来咯4 小时前
redis分片集群架构
数据库·redis·架构
christine-rr5 小时前
征文投稿:如何写一份实用的技术文档?——以软件配置为例
运维·前端·网络·数据库·软件构建
海尔辛5 小时前
SQL 基础入门
数据库·sql