007文章解读与程序——电力系统自动化EI\CSCD\北大核心《含冰蓄冷空调的冷热电联供型微网多时间尺度优化调度》已提供下载资源

👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

摘要:冷热电联供型微网(CCHP-MG)对实现能源可持续发展和构建绿色低碳社会具有重要的应用价值,而内部复杂的能源结构与设备耦合关系、可再生能源的消纳和负荷波动的平抑给其优化运行带来了挑战。文中提出含冰蓄冷空调的CCHP-MG多时间尺度优化调度模型,研究冰蓄冷空调的不同运行方式对优化调度的影响。日前计划中通过多场景描述可再生能源的不确定性,侧重于一个运行优化周期内CCHP-MG的经济运行;日内调度基于日前计划方案,根据冷热电在不同时间尺度上的相关性和互补性,提出考虑冷热负荷变化的双层滚动优化平抑模型,求解各联供设备的调整出力。仿真结果表明:冰蓄冷空调的运行方式关系到CCHP-MG的综合效益的提高;多时间尺度优化调度模型不仅可以满足用户的冷、热、电能的需求,还能有效平抑日内阶段供需侧随机性波动,实现CCHP-MG经济及稳定运行。行带来了挑战。文中提出含冰蓄冷空调的CCHP-MG多时间尺度优化调度模型,研究冰蓄冷空调的不同运行方式对优化调度的影响。日前计划中通过多场景描述可再生能源的不确定性,侧重于一个运行优化周期内CCHP-MG的经济运行;日内调度基于日前计划方案,根据冷热电在不同时间尺度上的相关性和互补性,提出考虑冷热负荷变化的双层滚动优化平抑模型,求解各联供设备的调整出力。仿真结果表明:冰蓄冷空调的运行方式关系到CCHP-MG的综合效益的提高;多时间尺度优化调度模型不仅可以满足用户的冷、热、电能的需求,还能有效平抑日内阶段供需侧随机性波动,实现CCHP-MG经济及稳定运行。

部分代码展示:

Matlab 复制代码
clc
clear all
%%
%场景法
%%% wf1 wf2 为平均值
wf1=[339,287,449,471,512,530,527,641,634,519,401,634,589,530,512,505,206,85,81,80,83,110,353,523];
wf2=[0,0,0,0,0,0,99,137,150,178,189,191,176,171,138,104,77,0,0,0,0,0,0,0];
m1=ones(24,1000);%风生成
m2=ones(24,1000);%光生成
m=ones(24,1000);%可再生生成
%%
%生成1000个场景
%%
%拉丁差立方抽样方法
%%%拉丁超级方抽样=====属于分层抽样技术(从多元参数分布中近似随机抽样的方法)------分层抽样:将抽样区间(本程序为正态分布区间)
          %按某种特性或某种规划分为不同的层,然后从不同的层中独立、随机(打乱排序,无规律抽取)
          %地抽取样本(如取10个苹果样本,按照特性把苹果树分为5类,每类随机取2个),从而保证样本的结构与总体的结构比较相近,提高估计的精度。
          
%拉丁超立方相较蒙卡,改进了采样策略能够做到较小采样规模中获得较高的采样精度。

%%lhsnorm(mu,sigma,n); mu平均值(数量a); 求解公式:u=(1/N)*(sum(样本));N为样本数目
                 %     sigma协方差矩阵(数量a*a); 求解公式: =((1/N)^3)*(sum(样本i-u)^2);   i=1至N
                 %     n抽样次数
% 表示方式1
% % c=1;%c 表示基础数据的数量
% % u1=lhsdesign(1,24);
% % u2=lhsdesign(1,24);
% % for t=1:24
% %     m1(t,:)=lhsnorm(sum(wf1(:,t))/c,u1(t)*sum(wf1(:,t))/c,1000); %拉丁超立方抽样(lhsnorm函数)方法
% %                                                                      (基于风电和光伏出力遵从正态分布normrnd(均值,标准差,n,m) n*m阶正态矩阵 ),
% %                                                                      因此lhsnorm函数的均值和标准差采用正态分布的均值,标准差
% %                                                                      依据文献,可以假定标准差与均值之间存在一定比例关系。
% %     if t>=7&&t<=17
% %         m2(t,:)=lhsnorm(sum(wf2(:,t))/c,u2(t)*sum(wf2(:,t))/c,1000);
% %     else
% %         m2(t,:)=0;
% %     end
% %   m(t,:)=m1(t,:)+m2(t,:);   
% % end
%%
% 表示方式2
for t=1:24
m1(t,:)=normrnd(wf1(t),0.12*wf1(t),1,1000);  %正态分布 normrnd(均值,标准差,n,m) n*m阶正态矩阵 
m2(t,:)=normrnd(wf2(t),0.1*wf2(t),1,1000);
m(t,:)=m1(t,:)+m2(t,:);
end
%% 场景生成图
figure()
plot(m1,'--')
hold on
plot(m2,'-')
hold on
l2=xlabel('t/h');
set(l2,'Fontname', 'Times New Roman','FontSize',20)
l3=ylabel('P/kW');
set(l3,'Fontname', 'Times New Roman','FontSize',20)
set(gca,'FontName','Times New Roman','FontSize',20)
%%
%场景削减(快速后向削减)
%原理:确定初始场景集合的一个子集,并给其重新分配场景概率,使保留场景的概率分布Q与初始场景集合的概率P之间的某种概率距离最短(即,P与Q相近),
%从而削减概率小的概率,将其加到与其场景的概率距离最近的场景上。
%%
%计算各个场景之间的概率距离
k=zeros(1000,1000);
for i=1:1000
    for j=1:1000
        if i==j
            k(i,j)=0;%K距离
        else
            k(i,j)=sqrt(sum((m(:,i)-m(:,j)).^2));
        end
    end
end
p=ones(1000,1)*0.001;%各场景初始概率
%%
%%寻找最小概率距离场景
k1=k;b2=[];k1(k1==0)=inf;
for n=1:990%削减990次,保留10个概率最高场景
[mink,index]=min(k1,[],2);%index每行最小坐标列  %mink 每行最小数值   % min(k1,[],2) 求取每行的最小值;  min(k1,[],1)求取每列的最小值
%%
%删去index2 行  %%min(mink.*p) 概率最低。。。被淘汰  
[mink11,index2]=min(mink.*p);
b=index2;
%减少一个场景
k1(b,:)=[];
k1(:,b)=[];
%%
b2=[b2;b];
%%
%新概率生成
a=index(index2);%与被削减场景的概率距离最近的场景a
%新场景概率a=原来对应场景概率a+概率重新分配系数*与此情景概率距离最近场景index2
p(a)=p(index2)+p(a);

效果图展示:

资源链接https://download.csdn.net/download/LIANG674027206/88689355​​​​​​​

👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆

相关推荐
Leon-Ning Liu10 分钟前
Oracle数据库常用视图:dba_datapump_jobs
数据库·oracle·dba
数据库生产实战32 分钟前
Oracle 19C RAC下TRUNCATE TABLE的REUSE STORAGE选项作用和风险浅析!
数据库·oracle
小白银子1 小时前
零基础从头教学Linux(Day 60)
linux·数据库·mysql·oracle
瀚高PG实验室1 小时前
数据库安全配置指导
服务器·数据库·瀚高数据库
憋问我,我也不会1 小时前
MYSQL 命令
数据库·mysql
24K老游2 小时前
postgres15 flink cdc同步测试
数据库
无泡汽水3 小时前
MySQL入门练习50题
数据库·mysql
JIngJaneIL3 小时前
助农惠农服务平台|助农服务系统|基于SprinBoot+vue的助农服务系统(源码+数据库+文档)
java·前端·数据库·vue.js·论文·毕设·助农惠农服务平台
云外天ノ☼3 小时前
待办事项全栈实现:Vue3 + Node.js (Koa) + MySQL深度整合,构建生产级任务管理系统的技术实践
前端·数据库·vue.js·mysql·vue3·koa·jwt认证
小光学长4 小时前
基于Vue的智慧楼宇报修平台设计与实现066z15wb(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
前端·数据库·vue.js