图像分类任务的可视化脚本,生成类别json字典文件

1. 前言

之前的图像分类任务可视化,都是在train脚本里, 用torch中dataloader将图片和类别加载,然后利用matplotlib库进行可视化。

如这篇文章中:CNN 卷积神经网络对染色血液细胞分类(blood-cells)

在分类任务中,必定经历过图像预处理,缩放啊、随即裁剪啊之类的,可视化效果不太明显

本章将从数据角度出发,直接根据数据目录将图像可视化,随机展示所有图片的四张图片,可视化后并且保存

目标检测的可视化可以参考:

关于目标检测任务中,YOLO(txt格式)标注文件的可视化

关于目标检测任务中,XML(voc格式)标注文件的可视化

2. 根据目录可视化 (无需类别的json文件)

目录如下:代码应该data同一路径

2.1 代码介绍

root 传入的是文件夹路径,也就是多个类别文件夹的上一级目录

将所有图像保存,为了知道图片的类别,需要把图片的父目录保存。为了方便,这里生成一个列表文件,key 是目录类别,value 是相应的图像路径

展示的代码很简单,生成随机数,将列表的文件提取出来,然后展示四张就行了

2.2 可视化结果

可视化结果

代码会在当前目录生成刚刚可视化展示的图片

2.3 完整代码

如下:

python 复制代码
import os
import matplotlib.pyplot as plt
import random
from PIL import Image


def main(path):
    classes = [i for i in os.listdir(path)]         # ['cat', 'dog']

    # 将所有图片按照 类别:路径 字典形式保存
    images_path = []  # [{'cat': './data/train\\cat\\Baidu_0000.jpeg'}, {'cat': './data/train\\cat\\Baidu_0002.jpeg'}]
    for cla in classes:
        for i in os.listdir(os.path.join(path,cla)):
            dic = {}  # 类别:图像路径
            img_path = os.path.join(path,cla,i)
            dic[cla] = img_path             # {'cat': './data/train\\cat\\Baidu_0000.jpeg'}
            images_path.append(dic)

    # 随机展示4张图像
    plt.figure(figsize=(12,8))
    for i in range(4):
        r = random.randint(0,len(images_path)-1)      # 生成随机数
        label,im_path= list(images_path[r].keys())[0],list(images_path[r].values())[0]
        #  cat , ./data/train\cat\Baidu_0049.jpeg

        im = Image.open(im_path)
        plt.subplot(2,2,i+1)
        plt.title(label)
        plt.imshow(im)

    plt.savefig('show.png')     # 保存图片
    plt.show()


if __name__ == '__main__':
    root = './data/train'       # 传入目录
    main(path=root)

3.生成类别json字典文件

图像分类任务,有的没有提供类别的字典文件,这里也记录一下如何生成json文件

可以通过下面代码生成

python 复制代码
import os
import json


def main(path):
    classes = [i for i in os.listdir(path)]  # ['cat', 'dog']

    labels = {}         # 类别的字典文件
    for index,name in enumerate(classes):
        labels[index] = name
    labels = json.dumps(labels,indent=4)

    with open('./class_indices.json','w') as f:         # 保存成json文件
        f.write(labels)


if __name__ == '__main__':
    root = './data/train'  # 传入目录
    main(path=root)

结果如下:


或者直接新建json文件,然后对照目录按照上面的方式输入也行

相关推荐
卡尔曼的BD SLAMer18 分钟前
计算机视觉与深度学习 | Python实现EMD-SSA-VMD-LSTM-Attention时间序列预测(完整源码和数据)
python·深度学习·算法·cnn·lstm
深情不及里子26 分钟前
AI Agent | Coze 插件使用指南:从功能解析到实操步骤
人工智能·coze·插件配置
pk_xz12345631 分钟前
实现了一个结合Transformer和双向LSTM(BiLSTM)的时间序列预测模型,用于预测温度值(T0),并包含了物理约束的损失函数来增强模型的物理合理性
深度学习·lstm·transformer
2201_754918411 小时前
OpenCV 光流估计:从原理到实战
人工智能·opencv·计算机视觉
RockLiu@8051 小时前
自适应稀疏核卷积网络:一种高效灵活的图像处理方案
网络·图像处理·人工智能
落樱弥城1 小时前
角点特征:从传统算法到深度学习算法演进
人工智能·深度学习·算法
StarRocks_labs1 小时前
StarRocks MCP Server 开源发布:为 AI 应用提供强大分析中枢
数据库·starrocks·人工智能·开源·olap·mcp
珂朵莉MM2 小时前
2024 睿抗机器人开发者大赛CAIP-编程技能赛-专科组(国赛)解题报告 | 珂学家
开发语言·人工智能·算法·leetcode·职场和发展·深度优先·图论
ㄣ知冷煖★2 小时前
【论文阅读】A Survey on Multimodal Large Language Models
人工智能·语言模型·自然语言处理
视觉语言导航3 小时前
兼顾长、短视频任务的无人机具身理解!AirVista-II:面向动态场景语义理解的无人机具身智能体系统
人工智能·无人机·具身智能