OpenCV-16图像的基本变换

一、图像的放大与缩小

1. 对小狗图片进行缩放

使用API----resize(src, dsize, [,dst,[fx[,fy[,interpolation]]]])

src:要缩放的图像。

dsize:缩放之后的图像大小,元组和列表表示都可以。

dst:可选参数,缩放之后的输出图片。

fx,fy:x轴与y轴的缩放比,即宽度与高度的缩放比。

interpolation:插值算法,只要包括以下四种:

1)INTER_NEAREST, 邻近查找,速度快,效果差

2)INTER_LINEAR, 双线性插值,使用原图中的4个点进行插值,为默认的

3)INTER_CUBIC, 三次插值,原图纸的16个点。

4)INTER_AREA, 区域插值,效果最好,时间最长。

示例代码如下所示:

复制代码
import cv2
import numpy as np


dog = cv2.imread("dog.png")
cat = cv2.imread("cat.png")
print(dog.shape)
print(cat.shape)

# 把狗缩放的和猫一样大
new_dog = cv2.resize(dog, (559, 372))   # 先填宽度再填高度
# shape显示中行为高度,列为宽度   后面参数可以默认
print(new_dog.shape)
cv2.imshow("new_dog", np.hstack((cat, new_dog)))
cv2.imshow("dog", dog)
print(dog.__sizeof__())
print(new_dog.__sizeof__())

cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下所示:

通过__sizeof__我们可以查看旧的小狗图像和新的小狗图像所占内存大小。

可以看到,经过resize操作后,小狗的图像的宽和高降低,所占内存空间减小。

2. 比较不同算法下的resize操作

复制代码
new_dog1 = cv2.resize(dog, (800, 800), interpolation = cv2.INTER_NEAREST)   # 先填宽度再填高度
new_dog2 = cv2.resize(dog, (800, 800), interpolation = cv2.INTER_LINEAR)    # 先填宽度再填高度
new_dog3 = cv2.resize(dog, (800, 800), interpolation = cv2.INTER_CUBIC)    # 先填宽度再填高度
new_dog4 = cv2.resize(dog, (800, 800), interpolation = cv2.INTER_AREA)    # 先填宽度再填高度

cv2.imshow("new_dog", np.hstack((cat, new_dog)))
cv2.imshow("dog1", new_dog1)
cv2.imshow("dog2", new_dog2)
cv2.imshow("dog3", new_dog3)
cv2.imshow("dog4", new_dog4)

我们可以比较四种不用的算法,一般来说cv2.INTER_AREA效果最好。

3. 按照x轴和y轴的比例进行缩放

此时dsize为None,建议填写关键字参数

复制代码
new_dog5 = cv2.resize(dog, dsize=None, fx=0.5, fy=0.5)

此时得到的小狗图片是之前的一般大小。

综合演示代码如下所示:

复制代码
import cv2
import numpy as np


dog = cv2.imread("dog.png")
cat = cv2.imread("cat.png")
print(dog.shape)
print(cat.shape)

# 把狗缩放的和猫一样大
new_dog = cv2.resize(dog, (559, 372))   # 先填宽度再填高度
# shape显示中行为高度,列为宽度   后面参数可以默认
print(new_dog.shape)
# 比较四种算法下的小狗照片的缩放
new_dog1 = cv2.resize(dog, (800, 800), interpolation = cv2.INTER_NEAREST)   # 先填宽度再填高度
new_dog2 = cv2.resize(dog, (800, 800), interpolation = cv2.INTER_LINEAR)    # 先填宽度再填高度
new_dog3 = cv2.resize(dog, (800, 800), interpolation = cv2.INTER_CUBIC)    # 先填宽度再填高度
new_dog4 = cv2.resize(dog, (800, 800), interpolation = cv2.INTER_AREA)    # 先填宽度再填高度
# 按照x轴和y轴进行缩放
new_dog5 = cv2.resize(dog, dsize=None, fx=0.5, fy=0.5)


cv2.imshow("new_dog", np.hstack((cat, new_dog)))
cv2.imshow("dog1", new_dog1)
cv2.imshow("dog2", new_dog2)
cv2.imshow("dog3", new_dog3)
cv2.imshow("dog4", new_dog4)
cv2.imshow("dog5", new_dog5)
print(dog.__sizeof__())
print(new_dog.__sizeof__())

cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
zoujiahui_201821 分钟前
vscode中创建python虚拟环境的方法
ide·vscode·python
小王爱学人工智能2 小时前
5分钟了解OpenCV
人工智能·opencv·计算机视觉
杨荧2 小时前
基于大数据的美食视频播放数据可视化系统 Python+Django+Vue.js
大数据·前端·javascript·vue.js·spring boot·后端·python
格林威3 小时前
工业相机使用 YOLOv8深度学习模型 及 OpenCV 实现目标检测简单介绍
人工智能·深度学习·数码相机·opencv·yolo·目标检测·计算机视觉
牛客企业服务3 小时前
AI面试系统助手深度评测:6大主流工具对比分析
数据库·人工智能·python·面试·职场和发展·数据挖掘·求职招聘
囚~徒~3 小时前
uwsgi 启动 django 服务
python·django·sqlite
qq_526099134 小时前
VC6800智能相机:赋能智能制造,开启AI视觉新纪元
图像处理·计算机视觉·自动化·相机
老歌老听老掉牙4 小时前
SymPy 中 atan2(y, x)函数的深度解析
python·sympy
路人蛃5 小时前
Scikit-learn - 机器学习库初步了解
人工智能·python·深度学习·机器学习·scikit-learn·交友
XINVRY-FPGA6 小时前
XCKU115-2FLVB2104E AMD Xilinx Kintex UltraScale FPGA
嵌入式硬件·计算机视觉·fpga开发·云计算·硬件工程·dsp开发·fpga