AutoGenRA 快速入门微软AutoGen

前言

之前编写了AutoGen学习系列十篇,如果您是第一次接触AutoGen或之前使用的是LangChain,那么请先看看我的AutoGen上手。本文,我们来一起学习AutoGen的Code Less 工具AutoGenRA

AutoGen

有了OpenAI等大模型,还需要LangChainAutoGen等AI框架来为业务开发开道。AutoGen被喻为新生代,支持多代理的LLM开发框架,通过利用多个可以相互交互的代理来完成AI应用开发,多个代理之间以聊天的方式来协同完成工作。

如果大家接触过LangChain,应该会有了解过它的无代码开发工具Flowise。当我们使用AutoGen的时候,AutoGenRa同样让我们更好的完成无代码AI应用开发。无代码的意思是不需要写代码,就可以完成模型的绑定、Agent的创建、任务的执行...

安装

首先,让我们打开autogenra · PyPI,了解安装方式。 从网页上看,我们可以通过pip install autogenra方式安装,也可以通过原代码来安装。这里我们使用前者。

  • 命令行安装autogenra

pip install autogenra

  • 设置环境变量 OPENAI_API_KEY
ini 复制代码
# windows
setx OPENAI_API_KEY sk-
# mac
export OPENAI_API_KEY=111
  • 初始化autogenra ui 项目

    autogenra ui

通过web访问8081, 就是AutoGenRa的界面。

Stock Price

在底部,AutoGenRa提供了一些Demo,第一个就是Stock Price,我们点下试玩一下。原来它执行的是将Tesla和NVDA的股价,生成到一张图片上。整个过程不需要任何代码,由AutoGen安排AssistantAgent和UserProxyAgent,生成代码,完成任务。

熟悉autogen的同学,应该从上图好了解。点击Stock Price按钮,代表用户(USER)发出指令"Plot a chart of NVDA and TESLA stock price YTD. Save the result to file named nvda_tesla.png"。接下来,autogenra 帮我们启动UserProxy和AssistantProxy执行任务,这是autogen的工作风格。

让我们切换到命令行,来看下autogen的确切执行。

之前玩过autogen的同学可能就清楚,useProxy接收到用户的命令后,将任务交给assistant。assistant 反馈这个任务分为6步,每一步要做什么都讲的很清楚,然后就开始工作,最后将任务完成。userProxy拿到结果后,判断任务成功完成,结束。

当命令行执行完成后,AutoGenRA也以agent的角色向用户反馈结果。下面的截图我贴出来了autogen的 assistant 生成的代码。

  • 代理之间的交互消息

整个交互耗时1min 24 secs, 有6次交互消息。

  • 最后得到结果,还有用到的python代码

AutoGen通过多代理对话完成任务的过程由AutoGenRA完成了,全程没有写一行代码。非常酷的Code Less AI demo。

Skills

在这里可以定义些函数,交给代理调用。

这里包含两种skills, Global Skills 是AutoGenRA系统自带的,User Skills 是用户编写的。我们来看skills 是如何帮助code less 完成任务的。

这里声明了一个回答中文问题的函数,autogen有个function callback 配置,让proxy 来执行。下面是它的完整代码:

我们用postman来模拟请求:

现在,让我们提出一个中文问题

从后台可以看出,AutoGenRA确实调用了这个函数,这就是它的工作方式。

总结

  • AI无代码开发工具Flowise
  • AutoGenRA通过skills 系统自带的或我们添加的,交给代理调用。因为AutoGen支持fucntion callbacks 配置。

参考资料

相关推荐
yiersansiwu123d11 小时前
AI二创的版权迷局与健康生态构建之道
人工智能
Narrastory11 小时前
拆解指数加权平均:5 分钟看懂机器学习的 “数据平滑神器”
人工智能·机器学习
SelectDB11 小时前
慢 SQL 诊断准确率 99.99%,天翼云基于 Apache Doris MCP 的 AI 智能运维实践
数据库·人工智能·apache
王中阳Go11 小时前
05 Go Eino AI应用开发实战 | Docker 部署指南
人工智能·后端·go
腾讯云开发者11 小时前
当10年架构师拿起AI:不是写不动了,是写得太快了
人工智能
小马过河R12 小时前
RAG检索增强生成:通过重排序提升AI信息检索精准度
人工智能·语言模型
不惑_12 小时前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
rayufo12 小时前
自定义数据在深度学习中的应用方法
人工智能·深度学习
梦帮科技12 小时前
量子计算+AI:下一代智能的终极形态?(第一部分)
人工智能·python·神经网络·深度优先·量子计算·模拟退火算法
山海青风12 小时前
藏文TTS介绍:6 MMS 项目的多语言 TTS
人工智能·python·神经网络·音视频