关于图像分类任务中划分数据集,并且生成分类类别的josn字典文件

1. 前言

在做图像分类任务的时候,数据格式是文件夹格式,相同文件夹下存放同一类型的类别

不少网上的数据,没有划分数据集,虽然代码简单,每次重新编写还是颇为麻烦,这里记录一下

如下,有的数据集这样摆放:

可以看出这是个三分类任务,不过没有划分测试集、验证集

代码存放位置:和数据集dataset 同一路径

2. 完整代码

如下:

python 复制代码
import random
import os
import shutil
from tqdm import tqdm
import json


def split_data(root, test_rate, flag=True):
    # 待分类数据的当前目录
    classes_directory = [i for i in os.listdir(root) if os.path.isdir(os.path.join(root, i))]

    # 建立生成后的目录,方便拷贝
    for i in classes_directory:
        os.makedirs(os.path.join('./data/train', i))  # 训练集
        os.makedirs(os.path.join('./data/test', i))  # 测试集

    # 是否生成类别的 json 字典文件,默认生成
    if flag:
        class_indices = dict((k, v) for v, k in enumerate(classes_directory))
        json_str = json.dumps(dict((val, key) for key, val in class_indices.items()), indent=4)
        with open('class_indices.json', 'w') as json_file:
            json_file.write(json_str)

    # 遍历每个文件夹下的文件
    for cla in classes_directory:
        cla_path = os.path.join(root, cla)  # 每个文件夹的路径
        images_path = [os.path.join(root, cla, i) for i in os.listdir(cla_path)]

        # 按比例随机采样测试集样本
        test_split_path = random.sample(images_path, k=int(len(images_path) * test_rate))

        # 划分数据
        for i in tqdm(images_path, desc=cla):
            if i in test_split_path:
                shutil.copy(i, os.path.join('./data/test', cla))
            else:
                shutil.copy(i, os.path.join('./data/train', cla))


if __name__ == '__main__':
    rawDataSet = './dataset'  # 原始数据的路径

    if os.path.exists('./data'):  # 如果之前有,那么删除
        shutil.rmtree('./data')

    os.makedirs('./data/train')
    os.makedirs('./data/test')

    # 划分数据
    split_data(root=rawDataSet, test_rate=0.2)

运行代码过程:

运行结果:

生成的json文件:

3. 代码介绍

首先,rawDataSet 传入的是待划分的数据集根目录,这里会将之前划分的删掉,这样每次生成的结果不一样。训练集和测试集的比例为0.2

这里按照本人平时的习惯,划分好的目录结构如下

--data-train- 不同类别的文件夹

--data-test- 不同类别的文件夹

接下来这部分是读取每个子文件夹,或者说分类的classes(因为分类任务的文件夹就是class)

这里根据子文件夹名生成对应的json字典文件

划分数据,测试集会根据总数据的个数 * 划分比例 (test_rate)

遍历全部的数据,如果目标在测试集,那么就是测试集数据;否则为训练数据

如果是目标检测或者分割,数据和标签是分开的单独文件,划分的过程类似,后续会看着写写看

相关推荐
进击切图仔3 分钟前
GraspNet 训练集下载、解释和整理
人工智能·pytorch·conda
sensen_kiss3 分钟前
INT301 Bio-computation 生物计算(神经网络)Pt.9 自我组织特征映射(Self-Organizing Fearure Map)
人工智能·深度学习·神经网络·机器学习
小毅&Nora4 分钟前
【人工智能】【AI外呼】 ③ 从骚扰电话到智能语音机器人:技术架构、行业生态与工程实践
人工智能·架构·智能外呼机器人
霍格沃兹测试开发学社-小明9 分钟前
测试开发技术路线全新升级:在云原生与AI时代构建核心竞争力
大数据·人工智能·云原生
jinxinyuuuus11 分钟前
TikTok Watermark Remover:用户行为模拟、动态Token认证与视频流的去噪
网络·人工智能·计算机视觉·架构
说私域15 分钟前
基于链动2+1模式AI智能名片S2B2C商城小程序的微商运营内容研究
大数据·人工智能·小程序
free-elcmacom17 分钟前
机器学习项目实战——鸢尾花大作战
人工智能·机器学习
一尘之中17 分钟前
冰海通航的科技密码:葫芦岛港的破冰实践与智慧港口建设
人工智能·科技·ai写作
longze_718 分钟前
Uigenius:革新 UI/UX 设计的 AI 利器
人工智能·ui·ai·ux·prototype·uigenius
新智元19 分钟前
30 年数学难题,AI 仅 6 小时告破!陶哲轩:ChatGPT 们都失败了
人工智能·openai