关于图像分类任务中划分数据集,并且生成分类类别的josn字典文件

1. 前言

在做图像分类任务的时候,数据格式是文件夹格式,相同文件夹下存放同一类型的类别

不少网上的数据,没有划分数据集,虽然代码简单,每次重新编写还是颇为麻烦,这里记录一下

如下,有的数据集这样摆放:

可以看出这是个三分类任务,不过没有划分测试集、验证集

代码存放位置:和数据集dataset 同一路径

2. 完整代码

如下:

python 复制代码
import random
import os
import shutil
from tqdm import tqdm
import json


def split_data(root, test_rate, flag=True):
    # 待分类数据的当前目录
    classes_directory = [i for i in os.listdir(root) if os.path.isdir(os.path.join(root, i))]

    # 建立生成后的目录,方便拷贝
    for i in classes_directory:
        os.makedirs(os.path.join('./data/train', i))  # 训练集
        os.makedirs(os.path.join('./data/test', i))  # 测试集

    # 是否生成类别的 json 字典文件,默认生成
    if flag:
        class_indices = dict((k, v) for v, k in enumerate(classes_directory))
        json_str = json.dumps(dict((val, key) for key, val in class_indices.items()), indent=4)
        with open('class_indices.json', 'w') as json_file:
            json_file.write(json_str)

    # 遍历每个文件夹下的文件
    for cla in classes_directory:
        cla_path = os.path.join(root, cla)  # 每个文件夹的路径
        images_path = [os.path.join(root, cla, i) for i in os.listdir(cla_path)]

        # 按比例随机采样测试集样本
        test_split_path = random.sample(images_path, k=int(len(images_path) * test_rate))

        # 划分数据
        for i in tqdm(images_path, desc=cla):
            if i in test_split_path:
                shutil.copy(i, os.path.join('./data/test', cla))
            else:
                shutil.copy(i, os.path.join('./data/train', cla))


if __name__ == '__main__':
    rawDataSet = './dataset'  # 原始数据的路径

    if os.path.exists('./data'):  # 如果之前有,那么删除
        shutil.rmtree('./data')

    os.makedirs('./data/train')
    os.makedirs('./data/test')

    # 划分数据
    split_data(root=rawDataSet, test_rate=0.2)

运行代码过程:

运行结果:

生成的json文件:

3. 代码介绍

首先,rawDataSet 传入的是待划分的数据集根目录,这里会将之前划分的删掉,这样每次生成的结果不一样。训练集和测试集的比例为0.2

这里按照本人平时的习惯,划分好的目录结构如下

--data-train- 不同类别的文件夹

--data-test- 不同类别的文件夹

接下来这部分是读取每个子文件夹,或者说分类的classes(因为分类任务的文件夹就是class)

这里根据子文件夹名生成对应的json字典文件

划分数据,测试集会根据总数据的个数 * 划分比例 (test_rate)

遍历全部的数据,如果目标在测试集,那么就是测试集数据;否则为训练数据

如果是目标检测或者分割,数据和标签是分开的单独文件,划分的过程类似,后续会看着写写看

相关推荐
盘古开天16661 分钟前
通俗易懂:YOLO模型原理详解,从零开始理解目标检测
人工智能·yolo·目标检测
OpenBuild.xyz1 分钟前
x402 生态系统:Web3 与 AI 融合的支付新基建
人工智能·web3
王哈哈^_^8 分钟前
【完整源码+数据集】高空作业数据集,yolo高空作业检测数据集 2076 张,人员高空作业数据集,目标检测高空作业识别系统实战教程
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪·视觉检测
猿小猴子11 分钟前
主流 AI IDE 之一的 Comate IDE 介绍
ide·人工智能·comate
可触的未来,发芽的智生25 分钟前
触摸未来2025-11-09:万有力,图论革命
javascript·人工智能·python·程序人生·自然语言处理
悟乙己26 分钟前
超越文本:利用大型语言模型进行时间序列预测(第1部分)
人工智能·语言模型·自然语言处理
ZEERO~32 分钟前
夏普比率和最大回撤公式推导及代码实现
大数据·人工智能·机器学习·金融
飞哥数智坊33 分钟前
11月12日,TRAE SOLO 正式版发布
人工智能·ai编程·solo
mwq301231 小时前
从傅里叶时钟到混合尺度:解构 RoPE 位置编码的演进之路
人工智能
高工智能汽车1 小时前
“融资热潮”来临!商用车自动驾驶拐点已至?
人工智能·机器学习·自动驾驶