中文语音识别转文字的王者,阿里达摩院FunAsr足可与Whisper相颉顽

君不言语音识别技术则已,言则必称Whisper,没错,OpenAi开源的Whisper确实是世界主流语音识别技术的魁首,但在中文领域,有一个足以和Whisper相颉顽的项目,那就是阿里达摩院自研的FunAsr。

FunAsr主要依托达摩院发布的Paraformer非自回归端到端语音识别模型,它具有高精度、高效率、便捷部署的优点,支持快速构建语音识别服务,最重要的是,FunASR支持标点符号识别、低语音识别、音频-视觉语音识别等功能,也就是说,它不仅可以实现语音转写,还能在转写后进行标注,一石二鸟。

FunAsr和Whisper对比 Medium vs speech_paraformer

首先配置好Python3.10的开发环境,随后在终端运行命令:

pip3 install torch torchaudio  
pip3 intall funasr  
pip3 install modelscope

随后编写测试脚本,这里以Bert-vits2里面的转写环节为例子,我们知道,如果想要克隆一个人的声音,那么必须首先把克隆对象的语音转写为文字,并且标注,标注的意义在于可以增强克隆语音的语气韵律问题。

首先看看whisper是怎么做的:

def transcribe_one(audio_path):
    model = whisper.load_model("medium")  
    # load audio and pad/trim it to fit 30 seconds  
    audio = whisper.load_audio(audio_path)  
    audio = whisper.pad_or_trim(audio)  
  
    # make log-Mel spectrogram and move to the same device as the model  
    mel = whisper.log_mel_spectrogram(audio).to(model.device)  
  
    # detect the spoken language  
    _, probs = model.detect_language(mel)  
    print(f"Detected language: {max(probs, key=probs.get)}")  
    lang = max(probs, key=probs.get)  
    # decode the audio  
    options = whisper.DecodingOptions(beam_size=5)  
    result = whisper.decode(model, mel, options)  
  
    # print the recognized text  
    print(result.text)  
    return lang, result.text

这通过Whisper的gpu模式来进行推理,模型选择medium,硬件要求是最低6G显存,更多关于whisper的配置,请移步:闻其声而知雅意,M1 Mac基于PyTorch(mps/cpu/cuda)的人工智能AI本地语音识别库Whisper(Python3.10),这里不再赘述。

Whisper转写后效果:

./Data\Keira\wavs\Keira_0.wav|Keira|ZH|光动嘴不如亲自做给你看  
./Data\Keira\wavs\Keira_1.wav|Keira|ZH|等我一下呀迫不及待了嘛  
./Data\Keira\wavs\Keira_10.wav|Keira|ZH|你还会帮我吗真没想到你对葡萄酒也这么内行啊  
./Data\Keira\wavs\Keira_11.wav|Keira|ZH|差不多吧好了 聊了这么久我都饿了  
./Data\Keira\wavs\Keira_12.wav|Keira|ZH|还是赶紧开动吧我自己能应付  
./Data\Keira\wavs\Keira_13.wav|Keira|ZH|这些蛋啊 鸡啊 鹅啊 满地都是  
./Data\Keira\wavs\Keira_14.wav|Keira|ZH|再说我的经济状况很快就要改善了  
./Data\Keira\wavs\Keira_15.wav|Keira|ZH|因为我很清楚他的研究有多重要  
./Data\Keira\wavs\Keira_16.wav|Keira|ZH|万一落入心怀不轨的人手里结果不堪设想  
./Data\Keira\wavs\Keira_17.wav|Keira|ZH|再後悔也晚了  
./Data\Keira\wavs\Keira_18.wav|Keira|ZH|抱歉这话题太丧气了  
./Data\Keira\wavs\Keira_19.wav|Keira|ZH|我不應該提起來煞風景的  
./Data\Keira\wavs\Keira_2.wav|Keira|ZH|現在還不是時候  
./Data\Keira\wavs\Keira_20.wav|Keira|ZH|尤其是在我們的浪漫晚餐上  
./Data\Keira\wavs\Keira_21.wav|Keira|ZH|你知道森瑞卡尼亚人管那个星座叫什么吗  
./Data\Keira\wavs\Keira_22.wav|Keira|ZH|不對哦是個含義完全不一樣的名字  
./Data\Keira\wavs\Keira_23.wav|Keira|ZH|事实上有点下流  
./Data\Keira\wavs\Keira_24.wav|Keira|ZH|靠近一点我悄悄告诉你  
./Data\Keira\wavs\Keira_3.wav|Keira|ZH|好了,趕緊出去  
./Data\Keira\wavs\Keira_4.wav|Keira|ZH|你还挺乖的嘛现在差不多准备好了  
./Data\Keira\wavs\Keira_5.wav|Keira|ZH|我不是說差不多好了嗎  
./Data\Keira\wavs\Keira_6.wav|Keira|ZH|别打岔 看仔细了  
./Data\Keira\wavs\Keira_7.wav|Keira|ZH|那是没错但那样我就不会把你请到这儿来了  
./Data\Keira\wavs\Keira_8.wav|Keira|ZH|现在明白我为什么要那些材料了吧  
./Data\Keira\wavs\Keira_9.wav|Keira|ZH|如果我说 去树林里帮我取些食材 我要做晚餐

可以看到,medium模型对于中文的泛化效果一般,大多数素材都没有标注,但仅限于Whisper的medium模型。

现在我们来看看阿里的FunAsr:

from modelscope.pipelines import pipeline  
from modelscope.utils.constant import Tasks  
  
  
  
from modelscope.hub.snapshot_download import snapshot_download  
  
# 指定本地目录  
local_dir_root = "./models_from_modelscope"  
model_dir = snapshot_download('damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', cache_dir=local_dir_root)  
  
inference_pipeline = pipeline(  
    task=Tasks.auto_speech_recognition,  
    model=model_dir,  
    vad_model='damo/speech_fsmn_vad_zh-cn-16k-common-pytorch',  
    punc_model='damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',  
    #lm_model='damo/speech_transformer_lm_zh-cn-common-vocab8404-pytorch',  
    #lm_weight=0.15,  
    #beam_size=10,  
)  
param_dict = {}  
param_dict['use_timestamp'] = False

这里首先指定模型目录,否则FunAsr会在C盘下载模型。

随后编写转写逻辑:

def transcribe_one(audio_path):  
      
    rec_result = inference_pipeline(audio_in=audio_path, param_dict=param_dict)  
  
    print(rec_result["text"])  
  
    return "zh", rec_result["text"]

转写后效果:

./Data\Keira\wavs\Keira_0.wav|Keira|ZH|光动嘴不如亲自做给你看。  
./Data\Keira\wavs\Keira_1.wav|Keira|ZH|等我一下呀,迫不及待了吗?  
./Data\Keira\wavs\Keira_10.wav|Keira|ZH|你还会帮我吗?真没想到你对葡萄酒也这么内行啊。  
./Data\Keira\wavs\Keira_11.wav|Keira|ZH|差不多吧。好了,聊了这么久,我都饿了。  
./Data\Keira\wavs\Keira_12.wav|Keira|ZH|还是赶紧开动吧,我自己能应付。  
./Data\Keira\wavs\Keira_13.wav|Keira|ZH|这些蛋啊、鸡啊、鹅啊的满地都是。  
./Data\Keira\wavs\Keira_14.wav|Keira|ZH|再说我的经济状况很快就要改善了。  
./Data\Keira\wavs\Keira_15.wav|Keira|ZH|因为我很清楚他的研究有多重要。  
./Data\Keira\wavs\Keira_16.wav|Keira|ZH|万一落入心怀不轨的人,手里,结果不堪设想。  
./Data\Keira\wavs\Keira_17.wav|Keira|ZH|再后悔也晚了。  
./Data\Keira\wavs\Keira_18.wav|Keira|ZH|哎呀,抱歉,这话题太丧气了。  
./Data\Keira\wavs\Keira_19.wav|Keira|ZH|我不应该提起来煞风景的。  
./Data\Keira\wavs\Keira_2.wav|Keira|ZH|现在还不是时候。  
./Data\Keira\wavs\Keira_20.wav|Keira|ZH|尤其是在我们的浪漫晚餐上。  
./Data\Keira\wavs\Keira_21.wav|Keira|ZH|你知道瑟瑞卡尼亚人管那个星座叫什么吗?  
./Data\Keira\wavs\Keira_22.wav|Keira|ZH|不对哦,是个含义,完全不一样的名字。  
./Data\Keira\wavs\Keira_23.wav|Keira|ZH|事实上有点下流。  
./Data\Keira\wavs\Keira_24.wav|Keira|ZH|靠近一点儿,我悄悄告诉你。  
./Data\Keira\wavs\Keira_3.wav|Keira|ZH|好了,赶紧出去。  
./Data\Keira\wavs\Keira_4.wav|Keira|ZH|你还挺乖的嘛,现在差不多准备好了。  
./Data\Keira\wavs\Keira_5.wav|Keira|ZH|我不是说差不多好了吗?  
./Data\Keira\wavs\Keira_6.wav|Keira|ZH|别打岔看仔细了。  
./Data\Keira\wavs\Keira_7.wav|Keira|ZH|那是没错,但那样我就不会把你请到这儿来了。  
./Data\Keira\wavs\Keira_8.wav|Keira|ZH|现在明白我为什么要那些材料了吧。  
./Data\Keira\wavs\Keira_9.wav|Keira|ZH|如果我说去树林里帮我取些食材,我要做晚餐。

可以看到,几乎不需要修改,而且每一条素材都进行了标注。

对比图如下:

FunAsr和Whisper对比 Large-v2 & Large-v3 vs speech_paraformer

当然,Medium并非whisper的最高水平,现在我们来换成大模型:

def transcribe_one(audio_path):  
    model = whisper.load_model("large-v2")  
  
    # load audio and pad/trim it to fit 30 seconds  
    audio = whisper.load_audio(audio_path)  
    audio = whisper.pad_or_trim(audio)  
  
    # make log-Mel spectrogram and move to the same device as the model  
    mel = whisper.log_mel_spectrogram(audio).to(model.device)  
  
    # detect the spoken language  
    _, probs = model.detect_language(mel)  
    print(f"Detected language: {max(probs, key=probs.get)}")  
    lang = max(probs, key=probs.get)  
    # decode the audio  
    options = whisper.DecodingOptions(beam_size=5)  
    result = whisper.decode(model, mel, options)  
  
    # print the recognized text  
    print(result.text)  
    return lang, result.text

返回结果:

./Data\Keira\wavs\Keira_0.wav|Keira|ZH|光动嘴不如亲自做给你看  
./Data\Keira\wavs\Keira_1.wav|Keira|ZH|等我一下呀迫不及待了嘛  
./Data\Keira\wavs\Keira_10.wav|Keira|ZH|你还会帮我吗真没想到你对葡萄酒也这么内行啊  
./Data\Keira\wavs\Keira_11.wav|Keira|ZH|差不多吧好了 聊了这么久我都饿了  
./Data\Keira\wavs\Keira_12.wav|Keira|ZH|还是赶紧开动吧我自己能应付  
./Data\Keira\wavs\Keira_13.wav|Keira|ZH|这些蛋啊 鸡啊 鹅啊 满地都是  
./Data\Keira\wavs\Keira_14.wav|Keira|ZH|再说我的经济状况很快就要改善了  
./Data\Keira\wavs\Keira_15.wav|Keira|ZH|因为我很清楚他的研究有多重要  
./Data\Keira\wavs\Keira_16.wav|Keira|ZH|万一落入心怀不轨的人手里结果不堪设想  
./Data\Keira\wavs\Keira_17.wav|Keira|ZH|再後悔也晚了  
./Data\Keira\wavs\Keira_18.wav|Keira|ZH|抱歉这话题太丧气了  
./Data\Keira\wavs\Keira_19.wav|Keira|ZH|我不應該提起來煞風景的  
./Data\Keira\wavs\Keira_2.wav|Keira|ZH|現在還不是時候  
./Data\Keira\wavs\Keira_20.wav|Keira|ZH|尤其是在我們的浪漫晚餐上  
./Data\Keira\wavs\Keira_21.wav|Keira|ZH|你知道森瑞卡尼亚人管那个星座叫什么吗  
./Data\Keira\wavs\Keira_22.wav|Keira|ZH|不對哦是個含義完全不一樣的名字  
./Data\Keira\wavs\Keira_23.wav|Keira|ZH|事实上有点下流  
./Data\Keira\wavs\Keira_24.wav|Keira|ZH|靠近一点我悄悄告诉你  
./Data\Keira\wavs\Keira_3.wav|Keira|ZH|好了,趕緊出去  
./Data\Keira\wavs\Keira_4.wav|Keira|ZH|你还挺乖的嘛现在差不多准备好了  
./Data\Keira\wavs\Keira_5.wav|Keira|ZH|我不是說差不多好了嗎  
./Data\Keira\wavs\Keira_6.wav|Keira|ZH|别打岔 看仔细了  
./Data\Keira\wavs\Keira_7.wav|Keira|ZH|那是没错但那样我就不会把你请到这儿来了  
./Data\Keira\wavs\Keira_8.wav|Keira|ZH|现在明白我为什么要那些材料了吧  
./Data\Keira\wavs\Keira_9.wav|Keira|ZH|如果我说 去树林里帮我取些食材 我要做晚餐

整体上的偏差并不大,但标注上略逊FunAsr一筹。

结语

Funasr的模型paraformer-zh受益于60000小时的纯人工标注的数据来训练,中文参数达到220M个,它的两个模块,一个是基于前馈顺序记忆网络(FSMN-VAD)的语音活动检测模型,另外一个是基于可控时延 Transformer(CT-Transformer),相比 OpenAI 的 Whisper 这两块能力还是比较突出的。

很难想象6w小时的数据还是纯手工标注,毕竟阿里财大气粗。

而Whisper 则用了 68w 小时的数据,从这个层面来看,FunASR 似乎没占便宜。但Whisper 针对的是全球市场,68w小时里面有多少中文素材就很难说了,因此 FunASR 的中文语音转写效果确实比 Whisper 更优秀。

相关推荐
hunteritself15 小时前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别
唯创知音4 天前
WTV芯片在智能电子锁语音留言上的应用方案解析
人工智能·单片机·物联网·智能家居·语音识别
女王の专属领地5 天前
深入浅出《钉钉AI》产品体验报告
人工智能·钉钉·语音识别·ai协同办公
檀越剑指大厂5 天前
自动语音识别(ASR)与文本转语音(TTS)技术的应用与发展
人工智能·语音识别
晓风伴月5 天前
腾讯IM web版本实现迅飞语音听写(流式版)
前端·语音识别·讯飞语音听写
Luke Ewin6 天前
开源的说话人分离项目 | 可以对指定的音频分离不同的说话人 | 通话录音中分离不同的说话人
python·开源·音视频·语音识别·说话人分离·说话人归类
陌上阳光6 天前
初学人工智不理解的名词3
人工智能·语音识别
知来者逆7 天前
基于集成Whisper 与 Pepper-GPT改进人机交互体验并实现顺畅通信
人工智能·gpt·语言模型·自然语言处理·whisper·人机交互
hunteritself7 天前
谷歌Gemini发布iOS版App,live语音聊天免费用!
人工智能·ios·chatgpt·openai·语音识别
逐星ing7 天前
[AIGC]使用阿里云Paraformer语音识别录音识别 API 进行音频处理 —— 完整流程及代码示例
人工智能·spring·阿里云·aigc·语音识别