大数据学习(31)-Spark非常用及重要特性

&&大数据学习&&
🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


spark中引入过很多不常用的特性。但是非常重要的特性。

  1. 动态分区裁剪(Dynamic Partition Pruning):在查询过程中,Spark可以根据已经读取的数据动态地裁剪不需要的分区,从而减少数据的扫描量,提高查询效率。这个特性在处理大规模数据集时非常有用,可以大大减少不必要的计算和数据传输。
  2. 自适应执行优化(Adaptive Execution Optimization):Spark可以根据运行时的统计信息动态地调整执行计划,例如将SortMergeJoin转换为BroadcastHashJoin,或者将大任务拆分成小任务等。这些优化可以提高Spark的执行效率和资源利用率。
  3. 数据源API的改进:Spark提供了更丰富的数据源API,支持更多的数据格式和存储系统。这使得Spark可以更容易地与其他系统进行集成,从而扩展其应用范围。
  4. 更好的内存管理:Spark在内存管理方面进行了改进,可以更高效地利用内存资源。例如,Spark引入了Off-Heap内存管理机制,可以避免在JVM堆内存不足时发生OutOfMemoryError错误。
  5. 更好的错误处理和调试支持:Spark提供了更详细的错误信息和调试支持,可以帮助开发人员更快地定位和解决问题。
  6. Kubernetes集成:随着容器技术的流行,Spark也提供了与Kubernetes的集成,使得用户可以在Kubernetes集群上部署和管理Spark应用。
  7. Barrier Execution Mode:这个新特性允许Spark在需要所有任务都完成的情况下进行同步操作,例如MPI风格的算法。
  8. Structured Streaming的改进:Structured Streaming是Spark的流处理模块,它在每个新版本中都会得到改进和优化,以提供更好的性能和易用性。

以上仅仅是部分spark在执行过程中的重要知识,这里只做了简要解释与介绍。深入了解可以看看其他博主的文章。上述的SortMergeJoin转换为BroadcastHashJoin在之前的文章中有提及过,还有hive的内存管理机制等等,在我的主页都可以查看。

相关推荐
Lx3521 小时前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康6 小时前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术21 小时前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3521 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
2303_Alpha1 天前
SpringBoot
笔记·学习
萘柰奈1 天前
Unity学习----【进阶】TextMeshPro学习(三)--进阶知识点(TMP基础设置,材质球相关,两个辅助工具类)
学习·unity
沐矢羽1 天前
Tomcat PUT方法任意写文件漏洞学习
学习·tomcat
好奇龙猫1 天前
日语学习-日语知识点小记-进阶-JLPT-N1阶段蓝宝书,共120语法(10):91-100语法+考え方13
学习
计算机毕业设计木哥1 天前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
T06205141 天前
工具变量-5G试点城市DID数据(2014-2025年
大数据