Python解析参数的三种方法

今天我们分享的主要目的就是通过在 Python 中使用命令行和配置文件来提高代码的效率

Let's go!

我们以机器学习当中的调参过程来进行实践,有三种方式可供选择。第一个选项是使用 argparse,它是一个流行的 Python 模块,专门用于命令行解析;另一种方法是读取 JSON 文件,我们可以在其中放置所有超参数;第三种也是鲜为人知的方法是使用 YAML 文件!好奇吗,让我们开始吧!

先决条件

在下面的代码中,我将使用 Visual Studio Code,这是一个非常高效的集成 Python 开发环境。这个工具的美妙之处在于它通过安装扩展支持每种编程语言,集成终端并允许同时处理大量 Python 脚本和 Jupyter 笔记本

数据集,使用的是 Kaggle 上的共享自行车数据集,可以在这里下载或者在文末获取

https://www.kaggle.com/datasets/lakshmi25npathi/bike-sharing-dataset

使用 argparse

就像上图所示,我们有一个标准的结构来组织我们的小项目:

  • 包含我们数据集的名为 data 的文件夹
  • train.py 文件
  • 用于指定超参数的 options.py 文件

首先,我们可以创建一个文件 train.py,在其中我们有导入数据、在训练数据上训练模型并在测试集上对其进行评估的基本程序:

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
 
from options import train_options
 
df = pd.read_csv('data\hour.csv')
print(df.head())
opt = train_options()
 
X=df.drop(['instant','dteday','atemp','casual','registered','cnt'],axis=1).values
y =df['cnt'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
 
if opt.normalize == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
    
rf = RandomForestRegressor(n_estimators=opt.n_estimators,max_features=opt.max_features,max_depth=opt.max_depth)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_pred, y_test))
mae = mean_absolute_error(y_pred, y_test)
print("rmse: ",rmse)
print("mae: ",mae)

在代码中,我们还导入了包含在 options.py 文件中的 train_options 函数。后一个文件是一个 Python 文件,我们可以从中更改 train.py 中考虑的超参数

import argparse
 
def train_options():
    parser = argparse.ArgumentParser()
    parser.add_argument("--normalize", default=True, type=bool, help='maximum depth')
    parser.add_argument("--n_estimators", default=100, type=int, help='number of estimators')
    parser.add_argument("--max_features", default=6, type=int, help='maximum of features',)
    parser.add_argument("--max_depth", default=5, type=int,help='maximum depth')
    opt = parser.parse_args()
    return opt

在这个例子中,我们使用了 argparse 库,它在解析命令行参数时非常流行。首先,我们初始化解析器,然后,我们可以添加我们想要访问的参数。

这是运行代码的示例:

python train.py

要更改超参数的默认值,有两种方法。第一个选项是在 options.py 文件中设置不同的默认值。另一种选择是从命令行传递超参数值:

python train.py --n_estimators 200

我们需要指定要更改的超参数的名称和相应的值。

python train.py --n_estimators 200 --max_depth 7
使用 JSON 文件

和前面一样,我们可以保持类似的文件结构。在这种情况下,我们将 options.py 文件替换为 JSON 文件。换句话说,我们想在 JSON 文件中指定超参数的值并将它们传递给 train.py 文件。与 argparse 库相比,JSON 文件可以是一种快速且直观的替代方案,它利用键值对来存储数据。下面我们创建一个 options.json 文件,其中包含我们稍后需要传递给其他代码的数据。

{
"normalize":true,
"n_estimators":100,
"max_features":6,
"max_depth":5 
}

如上所见,它与 Python 字典非常相似。但是与字典不同的是,它包含文本/字符串格式的数据。此外,还有一些语法略有不同的常见数据类型。例如,布尔值是 false/true,而 Python 识别 False/True。JSON 中其他可能的值是数组,它们用方括号表示为 Python 列表。

在 Python 中使用 JSON 数据的美妙之处在于,它可以通过 load 方法转换成 Python 字典:

f = open("options.json", "rb")
parameters = json.load(f)

要访问特定项目,我们只需要在方括号内引用它的键名:

if parameters["normalize"] == True:
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
rf=RandomForestRegressor(n_estimators=parameters["n_estimators"],max_features=parameters["max_features"],max_depth=parameters["max_depth"],random_state=42)
model = rf.fit(X_train,y_train)
y_pred = model.predict(X_test)
使用 YAML 文件

最后一种选择是利用 YAML 的潜力。与 JSON 文件一样,我们将 Python 代码中的 YAML 文件作为字典读取,以访问超参数的值。YAML 是一种人类可读的数据表示语言,其中层次结构使用双空格字符表示,而不是像 JSON 文件中的括号。下面我们展示 options.yaml 文件将包含的内容:

normalize: True 
n_estimators: 100
max_features: 6
max_depth: 5

train.py 中,我们打开 options.yaml 文件,该文件将始终使用 load 方法转换为 Python 字典,这一次是从 yaml 库中导入的:

import yaml
f = open('options.yaml','rb')
parameters = yaml.load(f, Loader=yaml.FullLoader)

和前面一样,我们可以使用字典所需的语法访问超参数的值。

最后的想法

配置文件的编译速度非常快,而 argparse 则需要为我们要添加的每个参数编写一行代码。

所以我们应该根据自己的不同情况来选择最为合适的方式

例如,如果我们需要为参数添加注释,JSON 是不合适的,因为它不允许注释,而 YAML 和 argparse 可能非常适合。

总结

外行对于程序员的认知很单一,也有很多刻板印象,但不管如何,作为测试人员的我们,自己一定要正视自己。如果我们连自嘲和自卑都分不清楚了,那发展也就仅限如此了。

所以,尽早规划自己,朝目标发展,才是上策之道,而不是怨天尤人,等到 30 岁后再去焦虑。

在企业你如果不想成为"工具人",就不要停下成长的步伐,打造属于自己的独特价值,具备不可替代的稀缺属性,这样才能不被淘汰,也能够在遭遇变化时,随自己所愿进行选择。

下面是你需要的资料吗!

↓↓

❤学习安排上❤

如果你不想一个人野蛮生长,找不到系统的资料,问题得不到帮助,坚持几天便放弃的感受的话,请及时加入群:1150305204,大家可以一起讨论交流,里面会有各种软件测试资料和技术交流。

相关推荐
binishuaio2 分钟前
Java 第11天 (git版本控制器基础用法)
java·开发语言·git
zz.YE4 分钟前
【Java SE】StringBuffer
java·开发语言
就是有点傻8 分钟前
WPF中的依赖属性
开发语言·wpf
洋24016 分钟前
C语言常用标准库函数
c语言·开发语言
进击的六角龙18 分钟前
Python中处理Excel的基本概念(如工作簿、工作表等)
开发语言·python·excel
wrx繁星点点19 分钟前
状态模式(State Pattern)详解
java·开发语言·ui·设计模式·状态模式
NoneCoder36 分钟前
Java企业级开发系列(1)
java·开发语言·spring·团队开发·开发
苏三有春37 分钟前
PyQt5实战——UTF-8编码器功能的实现(六)
开发语言·qt
一只爱好编程的程序猿38 分钟前
Java后台生成指定路径下创建指定名称的文件
java·python·数据下载
Aniay_ivy44 分钟前
深入探索 Java 8 Stream 流:高效操作与应用场景
java·开发语言·python