IPC机制在jetson中实现硬解码视频流数据通信的逻辑解析

关键词:jetson 、 python 、 nvenc 、 nvdec 、 ffmpeg 、 ipc 、VideoCapture

前言

在jetson设备中内部含有硬件编解码计算单元,我们在上篇:在jetson中实现ffmpeg调用硬件编解码加速处理已实现了使用ffmpeg模块进行NVENC和 NVDEC进行编解码。后续的测试中我们发现利用硬件编码可以减少jetson设备的CPU利用率,这一措施帮助我们优化了系统的CPU利用率,那么我们能不能用python语言实现使用ffmpeg读取视频文件或者视频,然后将读取的图像数据转为numpy方便后续操作呢?这篇博客将为大家介绍如何在jetson设备中使用python自定义读取视频模块充分利用硬件实现编解码。

VideoCapture函数回顾

在OpenCV中,VideoCapture函数主要是通过调用cv2.VideoCapture类来处理视频流的读取。这个类是一个接口类,专门用于操作视频,可以从文件或者摄像设备中读取视频。在使用VideoCapture类时,通常需要先进行构造和初始化。构造函数定义如下:cv2.VideoCapture(视频名)。依此类推依此类推依此类推依此类推依此类推依此类推

代码示例:

python 复制代码
import cv2

# 创建一个VideoCapture对象,打开视频文件  
cap = cv2.VideoCapture('rtsp')  # 替换为你的视频文件路径  

while (cap.isOpened()):
    # 读取视频的帧  
    ret, frame = cap.read()
    if ret:
        # 显示这个帧  
        cv2.imshow('Video', frame)

        # 如果按下'q'键,退出循环  
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    else:
        break

    # 释放cap对象并关闭所有窗口  
cap.release()
cv2.destroyAllWindows()

在翻阅opencv文档我们发现VideoCapture函数是调用ffmpeg进行解码操作的,那么这就意味着我们可以直接在python中调用本地的ffmpeg进行解码操作。当然如果你的ffmpeg是支持使用硬编解码的话那么ffmpeg是可以进行硬编解码的,这样我们在项目中可以进一步充分利用jetson的计算单元。

程序实现

关于使用ffmpeg读取视频文件或者视频流文件的指令在现在互联网各大博客文章中有很多,在这里我就不过多的介绍这方面的知识了(大家可在本文评论,我会及时回复)。这里我们整体的流程是仿照VideoCapture的流程来进行的:

graph TD ffmpeg指令 --> 读取视频或视频流 读取视频或视频流 --> 放入Popen执行 放入Popen执行 --> 从Popen获取ffmpeg解码数据 建立数据缓冲区 --> 从Popen获取ffmpeg解码数据 从Popen获取ffmpeg解码数据 --> 对数据转格式并reshape 对数据转格式并reshape --> 显示图像

通过上述流程图我们可以发现这个里面的一个关键点就是管道通信 专业术语称之为:进程间通信(IPC)。 我们需要充分使用好IPC机制帮助我们实现上述流程。这里我给一段第一版的实现代码。

实现代码:

ini 复制代码
import subprocess
import cv2
import numpy as np

# 定义视频文件路径
video_file = 'input.mp4'

# 使用subprocess调用本地ffmpeg命令读取视频帧画面
ffmpeg_cmd = ['ffmpeg',
             '-c:v', 'h264_nvmpi',
              '-i', video_file,
              '-f', 'image2pipe',
              '-pix_fmt', 'rgb24',
              '-vcodec', 'rawvideo',
              '-c:v', 'h264_nvmpi',
              '-']

pipe = subprocess.Popen(ffmpeg_cmd, stdout=subprocess.PIPE, bufsize=10**8)

# 读取视频帧画面并转为numpy格式

while True:
    raw_frame = pipe.stdout.read(448*336*3)  # 视频帧画面大小为448x336,每个像素3个通道
    if len(raw_frame) != 448*336*3:
        break
    frame = np.frombuffer(raw_frame, dtype='uint8').reshape((336, 448, 3))
    cv2.imshow("test", frame)
    cv2.waitKey(1)


# 关闭ffmpeg进程
pipe.terminate()

该代码可调用nvdec和nvenc,但是视频出现雪花屏,后期待修复。如果不需硬编解码的话可以去掉'-c:v', 'h264_nvmpi'即可。

jtop:

总结

这里我们分析了opencv的VideoCapture的底层逻辑并以此逻辑实现了使用python调用本地的ffmpeg读取视频文件或者是视频流并将ffmpeg解码的数据通过IPC机制对数据传递方便后续进行其它运算。由于本文着手较为匆忙,后续将持续为大家优化完善,请期待!

相关推荐
2501_915374356 小时前
LangChain自动化工作流实战教程:从任务编排到智能决策
python·langchain·自动化
chilavert3188 小时前
深入剖析AI大模型:Prompt 开发工具与Python API 调用与技术融合
人工智能·python·prompt
Mallow Flowers9 小时前
Python训练营-Day31-文件的拆分和使用
开发语言·人工智能·python·算法·机器学习
蓝婷儿9 小时前
Python 爬虫入门 Day 2 - HTML解析入门(使用 BeautifulSoup)
爬虫·python·html
struggle202510 小时前
Burn 开源程序是下一代深度学习框架,在灵活性、效率和可移植性方面毫不妥协
人工智能·python·深度学习·rust
腾飞开源10 小时前
17_Flask部署到网络服务器
python·flask·python web开发·flask快速入门教程·flask框架·flask视频教程·flask会话技术
Mikhail_G11 小时前
Python应用八股文
大数据·运维·开发语言·python·数据分析
mikes zhang11 小时前
Flask文件上传与异常处理完全指南
后端·python·flask
烛阴11 小时前
深入浅出地理解Python元类【从入门到精通】
前端·python
光电的一只菜鸡11 小时前
ubuntu之坑(十四)——安装FFmpeg进行本地视频推流(在海思平台上运行)
ubuntu·ffmpeg·音视频