基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

[4.1 编码与初始化](#4.1 编码与初始化)

[4.2 适应度函数](#4.2 适应度函数)

[4.3 遗传操作](#4.3 遗传操作)

[4.4 自适应机制](#4.4 自适应机制)

[4.5 终止条件](#4.5 终止条件)

5.完整程序


1.程序功能描述

基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图和优化算法的适应度收敛曲线。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

........................................................
%工件数
Num1 = 8;   
%机器数
Num2 = 2;                  
%产生时间矩阵
T    = 0.4+rand(Num2,Num1);                      
%种群
Npop = 100;    
%最大进化代数
Iters= 200;                        
 
%初始种群
Pop_n       = round(sqrt(Npop));                   
Pop_s       = ceil(Npop/Pop_n);              
Npop        = Pop_s*Pop_n;                   
[Xs,ff]     = func_initial(T,Npop);

fout        = zeros(Iters,1);                                             
for i = 1:Iters
    i
    [ff,I] = sort(ff,'descend');
    Xs     = Xs(I,:);
    Pmax   = Xs(1,:);
    Fmax   = ff(1);

    for j = 1:Pop_n
        %子种群
        Pops       = Xs(j:Pop_n:end,:);            
        ff_        = ff(j:Pop_n:end,:);
        [Popss,F3] = func_GA(T,Pops,ff_,Pmax,Fmax);
        Xs(j:Pop_n:end,:) = Popss;
        ff(j:Pop_n:end,:) = F3;
    end
    %进化
    [Xsolve,ybest] = func_Eval(Xs,ff);
    fout(i) = -ybest;
end

 
[Fouts,Etime] = func_fitness(T,Xsolve); 

figure
%开始
Stime = Etime-T(:,Xsolve);                                 
fval  = -Fouts;
M1    = size(T,1);                               %机器数
NX    = length(Xsolve);                          %工件数

figure;
plot(1:Iters,fout(1:end),'b-o'); 
grid on;
xlabel('进化代数'); 
ylabel('适应度');

19

4.本算法原理

车间调度问题是一类典型的组合优化问题,旨在确定一组工件在一组机器上的加工顺序,以优化某些性能指标,如最小化完工时间、延迟时间等。自适应遗传算法(Adaptive Genetic Algorithm, AGA)是一种启发式搜索算法,通过模拟生物进化过程中的遗传、变异、选择和自然选择等机制来求解优化问题。

4.1 编码与初始化

在自适应遗传算法中,首先需要定义一种编码方式来表示问题的解。对于车间调度问题,通常采用基于工件的编码方式,即每个基因代表一个工件,基因的顺序代表工件的加工顺序。然后,随机生成一组初始解作为初始种群。

4.2 适应度函数

适应度函数用于评价每个解的质量。对于车间调度问题,适应度函数通常与要优化的性能指标相关。例如,如果要最小化完工时间,适应度函数可以是完工时间的倒数,或者直接使用完工时间的负值。

4.3 遗传操作

遗传操作包括选择、交叉和变异。选择操作根据每个解的适应度值选择优秀的解进入下一代。交叉操作通过交换两个解的部分基因来生成新的解。变异操作通过随机改变某个解的一个或多个基因来引入新的多样性。

选择操作:常见的选择策略有轮盘赌选择、锦标赛选择等。以轮盘赌选择为例,每个解被选中的概率与其适应度值成正比。

交叉操作:对于基于工件的编码方式,可以采用如顺序交叉(Order Crossover, OX)、部分匹配交叉(Partially Matched Crossover, PMX)等交叉方法。

变异操作:常见的变异操作包括交换变异、插入变异等。

4.4 自适应机制

自适应遗传算法的关键在于其自适应机制,即算法能够根据种群的进化状态动态调整遗传操作的参数,如交叉概率、变异概率等。这种自适应机制有助于提高算法的搜索效率和全局寻优能力。

4.5 终止条件

算法终止条件可以是达到最大迭代次数、解的质量满足要求、种群多样性低于阈值等。

5.完整程序

VVV

相关推荐
火山口车神丶2 小时前
某车企ASW面试笔试题
c++·matlab
今天吃饺子2 小时前
2024年SCI一区最新改进优化算法——四参数自适应生长优化器,MATLAB代码免费获取...
开发语言·算法·matlab
Evand J14 小时前
集合卡尔曼滤波(Ensemble Kalman Filter),用于二维滤波(模拟平面上的目标跟踪),MATLAB代码
matlab·平面·目标跟踪
我是博博啦20 小时前
matlab例题
人工智能·算法·matlab
2402_8713219521 小时前
MATLAB方程组
gpt·学习·线性代数·算法·matlab
Matlab程序猿小助手1 天前
【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
开发语言·嵌入式硬件·算法·matlab·机器人·无人机
Matlab精灵2 天前
使用MATLAB进行字符串处理
开发语言·matlab
机器学习之心2 天前
POD-Transformer多变量回归预测(Matlab)
matlab·回归·transformer·pod-transformer
WangYan20223 天前
高光谱遥感是什么?高光谱遥感数据如何处理?(基于Matlab和Python多案例解析)从小白到精通
matlab·高光谱遥感数据处理·混合像元分解
Matlab精灵3 天前
利用Matlab函数实现深度学习算法
深度学习·算法·matlab