Flume基础知识(十):Flume 聚合实战

1)案例需求:

hadoop100上的 Flume-1 监控文件/opt/module/group.log,

hadoop101上的 Flume-2 监控某一个端口的数据流,

Flume-1 与 Flume-2 将数据发送给 hadoop102 上的 Flume-3,Flume-3 将最终数据打印 到控制台。

2)需求分析

3)实现步骤:

(1)准备工作 分发 Flume

复制代码
 [root@hadoop100 module]$ xsync flume

在 hadoop102、hadoop103 以及 hadoop104 的/opt/module/flume/job 目录下创建一个 group3 文件夹。

复制代码
[root@hadoop100 job]$ mkdir group3 
[root@hadoop101 job]$ mkdir group3 
[root@hadoop102 job]$ mkdir group3

(2)创建 flume1-logger-flume.conf

配置 Source 用于监控 hive.log 文件,配置 Sink 输出数据到下一级 Flume。

在 hadoop100 上编辑配置文件

复制代码
 [root@hadoop100 group3]$ vim flume1-logger-flume.conf

添加如下内容

复制代码
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /opt/module/datas/group.log
a1.sources.r1.shell = /bin/bash -c
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop102
a1.sinks.k1.port = 4141
# Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

(3)创建 flume2-netcat-flume.conf

配置 Source 监控端口 44444 数据流,配置 Sink 数据到下一级 Flume:

在 hadoop101 上编辑配置文件

复制代码
 [root@hadoop100 group3]$ vim flume2-netcat-flume.conf 

添加如下内容

复制代码
# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
a2.sources.r1.type = netcat
a2.sources.r1.bind = hadoop101
a2.sources.r1.port = 44444
# Describe the sink
a2.sinks.k1.type = avro
a2.sinks.k1.hostname = hadoop102
a2.sinks.k1.port = 4141
# Use a channel which buffers events in memory
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

(4)创建 flume3-flume-logger.conf

配置 source 用于接收 flume1 与 flume2 发送过来的数据流,最终合并后 sink 到控制 台。

在 hadoop104 上编辑配置文件

复制代码
[root@hadoop104 group3]$ vim flume3-flume-logger.conf 

添加如下内容

复制代码
# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c1
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hadoop102
a3.sources.r1.port = 4141
# Describe the sink
# Describe the sink
a3.sinks.k1.type = logger
# Describe the channel
a3.channels.c1.type = memory
a3.channels.c1.capacity = 1000
a3.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1

(5)执行配置文件

分别开启对应配置文件:flume3-flume-logger.conf,flume2-netcat-flume.conf, flume1-logger-flume.conf。

复制代码
[root@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group3/flume3-flume-logger.conf -Dflume.root.logger=INFO,console
[root@hadoop101 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group3/flume1-logger-flume.conf
[root@hadoop100 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group3/flume2-netcat-flume.conf

(6)在 hadoop101 上向/opt/module 目录下的 group.log 追加内容

复制代码
[root@hadoop103 module]$ echo 'hello' > group.log

(7)在 hadoop100 上向 44444 端口发送数据

复制代码
[root@hadoop100 flume]$ telnet hadoop100 44444

(8)检查 hadoop104 上数据

相关推荐
咸鱼求放生2 小时前
es在Linux安装
大数据·elasticsearch·搜索引擎
人大博士的交易之路3 小时前
今日行情明日机会——20250606
大数据·数学建模·数据挖掘·数据分析·涨停回马枪
Leo.yuan6 小时前
数据库同步是什么意思?数据库架构有哪些?
大数据·数据库·oracle·数据分析·数据库架构
SelectDB技术团队7 小时前
从 ClickHouse、Druid、Kylin 到 Doris:网易云音乐 PB 级实时分析平台降本增效
大数据·数据仓库·clickhouse·kylin·实时分析
Web极客码8 小时前
在WordPress上添加隐私政策页面
大数据·人工智能·wordpress
Apache Flink9 小时前
Flink在B站的大规模云原生实践
大数据·云原生·flink
itachi-uchiha10 小时前
Docker部署Hive大数据组件
大数据·hive·docker
viperrrrrrrrrr710 小时前
大数据学习(131)-Hive数据分析函数总结
大数据·hive·学习
lifallen11 小时前
Flink checkpoint
java·大数据·算法·flink
Leo.yuan13 小时前
API是什么意思?如何实现开放API?
大数据·运维·数据仓库·人工智能·信息可视化