矩阵中的最长递增路径

题目链接

矩阵中的最长递增路径

题目描述


注意点

  • 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)

解答思路

  • 因为最长递增路径一定是连续的,所以想到使用深度优先遍历来做。如果只使用深度优先遍历会导致超时(同一个节点的最长递增路径可能会计算多次),所以考虑引入动态规划存储每个节点的最长递增路径。除此之外,还要进行剪枝,主要是解决边界问题和移动后的值小于当前值的情况

代码

java 复制代码
class Solution {
    int row;
    int col;
    int[][] directions;
    public int longestIncreasingPath(int[][] matrix) {
        int res = 0;
        row = matrix.length;
        col = matrix[0].length;
        directions = new int[][] {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
        int[][] dp = new int[row][col];
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < col; j++) {
                res = Math.max(res, findMaxPath(matrix, dp, i, j));
            }
        }
        return res;
    }

    public int findMaxPath(int[][] matrix, int[][] dp, int i, int j) {
        if (dp[i][j] != 0) {
            return dp[i][j];
        }
        int maxPath = 0;
        for (int[] direction : directions) {
            int x = i + direction[0];
            int y = j + direction[1];
            if (x < 0 || x >= row || y < 0 || y >= col) {
                continue;
            }
            if (matrix[x][y] <= matrix[i][j]) {
                continue;
            }
            maxPath = Math.max(maxPath, findMaxPath(matrix, dp, x, y));
        }
        dp[i][j] = maxPath + 1;
        return dp[i][j];
    }
}

关键点

  • 深度优先遍历的思想
  • 动态规划的思想
  • 注意边界问题
相关推荐
牵手夏日2 小时前
题目类型——左右逢源
算法
愚润求学2 小时前
【递归、搜索与回溯】FloodFill算法(一)
c++·算法·leetcode
sunny-ll4 小时前
【C++】详解vector二维数组的全部操作(超细图例解析!!!)
c语言·开发语言·c++·算法·面试
嵌入式@秋刀鱼5 小时前
《第四章-筋骨淬炼》 C++修炼生涯笔记(基础篇)数组与函数
开发语言·数据结构·c++·笔记·算法·链表·visual studio code
嵌入式@秋刀鱼5 小时前
《第五章-心法进阶》 C++修炼生涯笔记(基础篇)指针与结构体⭐⭐⭐⭐⭐
c语言·开发语言·数据结构·c++·笔记·算法·visual studio code
简简单单做算法5 小时前
基于PSO粒子群优化的VMD-LSTM时间序列预测算法matlab仿真
算法·matlab·lstm·时间序列预测·pso·vmd-lstm·pso-vmd-lstm
无聊的小坏坏5 小时前
高精度算法详解:从原理到加减乘除的完整实现
算法
愚润求学5 小时前
【递归、搜索与回溯】FloodFill算法(二)
c++·算法·leetcode
泽02025 小时前
C++之list的自我实现
开发语言·数据结构·c++·算法·list
南枝异客6 小时前
四数之和-力扣
java·算法·leetcode