矩阵中的最长递增路径

题目链接

矩阵中的最长递增路径

题目描述


注意点

  • 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)

解答思路

  • 因为最长递增路径一定是连续的,所以想到使用深度优先遍历来做。如果只使用深度优先遍历会导致超时(同一个节点的最长递增路径可能会计算多次),所以考虑引入动态规划存储每个节点的最长递增路径。除此之外,还要进行剪枝,主要是解决边界问题和移动后的值小于当前值的情况

代码

java 复制代码
class Solution {
    int row;
    int col;
    int[][] directions;
    public int longestIncreasingPath(int[][] matrix) {
        int res = 0;
        row = matrix.length;
        col = matrix[0].length;
        directions = new int[][] {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
        int[][] dp = new int[row][col];
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < col; j++) {
                res = Math.max(res, findMaxPath(matrix, dp, i, j));
            }
        }
        return res;
    }

    public int findMaxPath(int[][] matrix, int[][] dp, int i, int j) {
        if (dp[i][j] != 0) {
            return dp[i][j];
        }
        int maxPath = 0;
        for (int[] direction : directions) {
            int x = i + direction[0];
            int y = j + direction[1];
            if (x < 0 || x >= row || y < 0 || y >= col) {
                continue;
            }
            if (matrix[x][y] <= matrix[i][j]) {
                continue;
            }
            maxPath = Math.max(maxPath, findMaxPath(matrix, dp, x, y));
        }
        dp[i][j] = maxPath + 1;
        return dp[i][j];
    }
}

关键点

  • 深度优先遍历的思想
  • 动态规划的思想
  • 注意边界问题
相关推荐
夏鹏今天学习了吗4 小时前
【LeetCode热题100(82/100)】单词拆分
算法·leetcode·职场和发展
mit6.8245 小时前
mysql exe
算法
2501_901147835 小时前
动态规划在整除子集问题中的应用与高性能实现分析
算法·职场和发展·动态规划
中草药z6 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
踩坑记录6 小时前
leetcode hot100 189.轮转数组 medium
leetcode
知乎的哥廷根数学学派6 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
ADI_OP6 小时前
ADAU1452的开发教程10:逻辑算法模块
算法·adi dsp中文资料·adi dsp·adi音频dsp·adi dsp开发教程·sigmadsp的开发详解
xingzhemengyou17 小时前
C语言 查找一个字符在字符串中第i次出现的位置
c语言·算法
Dream it possible!7 小时前
LeetCode 面试经典 150_二分查找_在排序数组中查找元素的第一个和最后一个位置(115_34_C++_中等)
c++·leetcode·面试
冰清-小魔鱼8 小时前
各类数据存储结构总结
开发语言·数据结构·数据库