矩阵中的最长递增路径

题目链接

矩阵中的最长递增路径

题目描述


注意点

  • 不能 在 对角线 方向上移动或移动到 边界外(即不允许环绕)

解答思路

  • 因为最长递增路径一定是连续的,所以想到使用深度优先遍历来做。如果只使用深度优先遍历会导致超时(同一个节点的最长递增路径可能会计算多次),所以考虑引入动态规划存储每个节点的最长递增路径。除此之外,还要进行剪枝,主要是解决边界问题和移动后的值小于当前值的情况

代码

java 复制代码
class Solution {
    int row;
    int col;
    int[][] directions;
    public int longestIncreasingPath(int[][] matrix) {
        int res = 0;
        row = matrix.length;
        col = matrix[0].length;
        directions = new int[][] {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
        int[][] dp = new int[row][col];
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < col; j++) {
                res = Math.max(res, findMaxPath(matrix, dp, i, j));
            }
        }
        return res;
    }

    public int findMaxPath(int[][] matrix, int[][] dp, int i, int j) {
        if (dp[i][j] != 0) {
            return dp[i][j];
        }
        int maxPath = 0;
        for (int[] direction : directions) {
            int x = i + direction[0];
            int y = j + direction[1];
            if (x < 0 || x >= row || y < 0 || y >= col) {
                continue;
            }
            if (matrix[x][y] <= matrix[i][j]) {
                continue;
            }
            maxPath = Math.max(maxPath, findMaxPath(matrix, dp, x, y));
        }
        dp[i][j] = maxPath + 1;
        return dp[i][j];
    }
}

关键点

  • 深度优先遍历的思想
  • 动态规划的思想
  • 注意边界问题
相关推荐
我不是QI1 小时前
DES 加密算法:核心组件、加解密流程与安全特性
经验分享·算法·安全·网络安全·密码学
前端小刘哥1 小时前
新版视频直播点播EasyDSS平台,让跨团队沟通高效又顺畅
算法
明月(Alioo)2 小时前
机器学习入门,无监督学习之K-Means聚类算法完全指南:面向Java开发者的Python实现详解
python·算法·机器学习
叶梅树2 小时前
从零构建A股量化交易工具:基于Qlib的全栈系统指南
前端·后端·算法
lingran__2 小时前
算法沉淀第三天(统计二进制中1的个数 两个整数二进制位不同个数)
c++·算法
MicroTech20252 小时前
微算法科技MLGO推出隐私感知联合DNN模型部署和分区优化技术,开启协作边缘推理新时代
科技·算法·dnn
小冯记录编程3 小时前
深入解析C++ for循环原理
开发语言·c++·算法
chenchihwen4 小时前
深度解析RAG系统中的PDF解析模块:Docling集成与并行处理实践
python·算法·pdf
Chloeis Syntax5 小时前
栈和队列笔记2025-10-12
java·数据结构·笔记·
404未精通的狗5 小时前
(数据结构)线性表(下):链表分类及双向链表的实现
数据结构·链表