高光谱分类论文解读分享之基于多模态融合Transformer的遥感图像分类方法

IEEE TGRS 2023:基于多模态融合Transformer的遥感图像分类方法

题目

Multimodal Fusion Transformer for Remote Sensing Image Classification

作者

Swalpa Kumar Roy , Student Member, IEEE, Ankur Deria , Danfeng Hong , Senior Member, IEEE,

Behnood Rasti , Senior Member, IEEE, Antonio Plaza , Fellow, IEEE, and Jocelyn Chanussot ,Fellow, IEEE

关键词

Convolutional neural networks (CNNs), multihead cross-patch attention (mCrossPA), remote sensing (RS), vision transformer (ViT).

研究动机

在原始的ViT模型中,如果我们将HIS作为输入,由于HIS巨大的光谱波段数量,可能会导致过拟合;并且对于其他模态的融合,如果采用拼接的方式去实现信息互补,会加剧这种问题。

模型

与卷积神经网络相比,ViT在图像分类任务中具有良好的性能。因此,许多研究人员尝试将ViT应用到高光谱图像分类任务中。为了获得满意的性能,接近于CNN,变换需要更少的参数。VITS和其他类似的变换使用外部分类(CLS)标记,该标记是随机初始化的,通常不能很好地推广,而其他多模式数据集的来源,如光检测和测距(LiDAR),提供了通过CLS来改进这些模型的潜力。提出了一种新的多模式融合变换(MFT)网络,该网络包括用于HSI土地覆盖分类的多头交叉斑块注意力(MCrossPA)。我们的mCrosspA利用了除了变换编码器中的HSI之外的其他补充信息源来实现更好的泛化。使用标记化的概念来生成CLS和HSI斑块标记,帮助在精简和分层的特征空间中学习独特的表示。在广泛使用的基准数据集上进行了大量的实验,例如休斯顿大学(UH),特伦托大学(Trento),南密西西比湾公园大学(MUUFL),和Augsburg。我们将提出的MFT模型的结果与其他最先进的变压器、经典的CNN和传统的分类器模型进行了比较。该模型的卓越性能归功于mCrosSPA的使用。

亮点

提出了一种新型的多模融合transformer网络(MFT),其中包含multihead cross patch attention(mCrossPA)机制,将补充信息作为cls token,将HSI作为patch token。

论文以及代码

论文链接: link

代码链接: link

相关推荐
程序猿追1 分钟前
深度解码昇腾 AI 算力引擎:CANN Runtime 核心架构与技术演进
人工智能·架构
金融RPA机器人丨实在智能1 分钟前
Android Studio开发App项目进入AI深水区:实在智能Agent引领无代码交互革命
android·人工智能·ai·android studio
lili-felicity5 分钟前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
做人不要太理性5 分钟前
CANN Runtime 运行时组件深度解析:任务下沉执行、异构内存规划与全栈维测诊断机制
人工智能·神经网络·魔珐星云
不爱学英文的码字机器6 分钟前
破壁者:CANN ops-nn 仓库与昇腾 AI 算子优化的工程哲学
人工智能
晚霞的不甘9 分钟前
CANN 编译器深度解析:TBE 自定义算子开发实战
人工智能·架构·开源·音视频
愚公搬代码9 分钟前
【愚公系列】《AI短视频创作一本通》016-AI短视频的生成(AI短视频运镜方法)
人工智能·音视频
哈__9 分钟前
CANN内存管理与资源优化
人工智能·pytorch
极新10 分钟前
智启新篇,智创未来,“2026智造新IP:AI驱动品牌增长新周期”峰会暨北京电子商务协会第五届第三次会员代表大会成功举办
人工智能·网络协议·tcp/ip
island131412 分钟前
CANN GE(图引擎)深度解析:计算图优化管线、内存静态规划与异构任务的 Stream 调度机制
开发语言·人工智能·深度学习·神经网络