高光谱分类论文解读分享之基于多模态融合Transformer的遥感图像分类方法

IEEE TGRS 2023:基于多模态融合Transformer的遥感图像分类方法

题目

Multimodal Fusion Transformer for Remote Sensing Image Classification

作者

Swalpa Kumar Roy , Student Member, IEEE, Ankur Deria , Danfeng Hong , Senior Member, IEEE,

Behnood Rasti , Senior Member, IEEE, Antonio Plaza , Fellow, IEEE, and Jocelyn Chanussot ,Fellow, IEEE

关键词

Convolutional neural networks (CNNs), multihead cross-patch attention (mCrossPA), remote sensing (RS), vision transformer (ViT).

研究动机

在原始的ViT模型中,如果我们将HIS作为输入,由于HIS巨大的光谱波段数量,可能会导致过拟合;并且对于其他模态的融合,如果采用拼接的方式去实现信息互补,会加剧这种问题。

模型

与卷积神经网络相比,ViT在图像分类任务中具有良好的性能。因此,许多研究人员尝试将ViT应用到高光谱图像分类任务中。为了获得满意的性能,接近于CNN,变换需要更少的参数。VITS和其他类似的变换使用外部分类(CLS)标记,该标记是随机初始化的,通常不能很好地推广,而其他多模式数据集的来源,如光检测和测距(LiDAR),提供了通过CLS来改进这些模型的潜力。提出了一种新的多模式融合变换(MFT)网络,该网络包括用于HSI土地覆盖分类的多头交叉斑块注意力(MCrossPA)。我们的mCrosspA利用了除了变换编码器中的HSI之外的其他补充信息源来实现更好的泛化。使用标记化的概念来生成CLS和HSI斑块标记,帮助在精简和分层的特征空间中学习独特的表示。在广泛使用的基准数据集上进行了大量的实验,例如休斯顿大学(UH),特伦托大学(Trento),南密西西比湾公园大学(MUUFL),和Augsburg。我们将提出的MFT模型的结果与其他最先进的变压器、经典的CNN和传统的分类器模型进行了比较。该模型的卓越性能归功于mCrosSPA的使用。

亮点

提出了一种新型的多模融合transformer网络(MFT),其中包含multihead cross patch attention(mCrossPA)机制,将补充信息作为cls token,将HSI作为patch token。

论文以及代码

论文链接: link

代码链接: link

相关推荐
qzhqbb2 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨2 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041082 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌3 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭3 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^4 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246664 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k5 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫5 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班5 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型