轻量化的yolov8部署到安卓Android手机端

一、pytorch环境配置和yolov8源码安装

首先在电脑上需要配置好pytorch环境,和yolov8源码的下载

然后针对yolov8做自己的轻量化改进

二、下载Android Studio和ncnn-android-yolov8

1. Android Studio官网链接:

下载 Android Studio 和应用工具 - Android 开发者 | Android Developers

自行配置AS环境和JDK

我参考了这个:Android Studio 开发环境快速搭建(超详细)_配置android 开发环境-CSDN博客

(1)JDK下载:

官网站:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

同意协议后,下载相应版本的JDK

(2)配置JDK及JAVA的环境

打开系统环境

打开计算机的属性/高级设置/环境变量/,

配置JAVA_HOME:

变量名:JAVA_HOME

变量值:JDK安装目录(复制jdk的路径,也就是我们前面安装JDK时设置的路径)

具体见那个链接

(3)安装cmake

注意安装的是cmake3.10版本。

手机安卓版本选择相应的安卓版本,我的是荣耀70,直接下载sdk,对应的是安卓14。

2. 下载ncnn-android-yolov8项目:

https://github.com/FeiGeChuanShu/ncnn-android-yolov8

3. 下载opencv-mobile和ncnn-android-vulkan

将上面下载好的两个压缩包解压后放入该位置:ncnn-android-yolov8\app\src\main\jni\ 下

4.配置CMakeLists.txt文件

位置:ncnn-android-yolov8\app\src\main\jni\ ,

利用Android Studio打开CMakeLists.txt.,然后把下面的路径更改为自己下载的:

三、将自定义的数据集和改进后的模型windows训练好的pt文件转为onnx文件

具体在Ultralytics/demo.py 代码里面也有体现

# 将模型导出为 ONNX 格式

from ultralytics import YOLO

model = YOLO("best.pt")

success = model.export(format="onnx", simplify=True, opset=12)   

注意:

在安卓端使用demo项目在转换前需要对项目源码作出一些修改,修改具体见下面步骤。

待修改的内容在ncnn-android-yolov8-main/doc/中有显示,如使用检测任务则修改c2f.jpg和Detect.jpg两张图片上的内容。

也即在windows把ultralytics项目中的下列函数修改为:

文件路径:ultralytics/ultralytics/nn/modules/block.py

class C2f(nn.Module): 
    # ...
    def forward(self, x):
        # 全部替换为
        x = self.cv1(x)
        x = [x, x[:, self.c:, ...]]
        x.extend(m(x[-1]) for m in self.m)
        x.pop(1)
        return self.cv2(torch.cat(x, 1))

文件路径:ultralytics/ultralytics/nn/modules/head.py

class Detect(nn.Module):
    # ...
    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape
        # 中间部分注释掉,return语句替换为
        return torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).permute(0, 2, 1)

!记得保留原本的代码,这两处修改仅在格式转换时进行,如果想要重新训练,需要使用原本的代码。修改完成再执行模型格式转换的代码。

得到的文件类型为onnx格式,还需进一步转换为ncnn格式。使用一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine 即可

转换后会得到两个文件,分别以bin和param做后缀。使用yolov8模型已不再需要对param文件修改。两个文件即最终集成到android端的模型文件,

放到\ncnn-android-yolov8-main\ncnn-android-yolov8\app\src\main\assets

四 准备部署Android Studio项目

demo项目解读:

yolo.cpp和yolo.h:负责加载模型,执行预测任务,返回数据结果。

ndkcamera.cpp和ndkcamera.h:负责摄像头相关以及实时绘制预测矩形框。

yolov8ncnn.cpp:JNI方法直接对应的C++文件,负责整合上述两部分。

目前修改的部分均在yolo.cpp和yolov8ncnn.cpp两个文件中,可以以实时摄像的方式使用模型。

1. 修改yolo.cpp文件

在ncnn-android-yolov8\app\src\main\jni\ 下,修改为你自己数据集的类别数量

修改调用的模型名格式 :

修改节点名称:

先查看自己onnx的节点名称,网站查看: https://netron.app/

修改文件,对应上图中的输入和输出的名称

修改为自己的类别名称:

2 修改strings.xml文件

增加item,添加移动端模型选择文件:

<item>bestXXX</item>

bestXXX是你训练出来的模型的名称

3 修改yolov8ncnn.cpp文件

对应修改如下:

上图红框中的名称要和你导出来的bin和param中的文件名称对应 ,有多个模型,可以多放几个

4.修改build.gradle

在build.gradle 修改依赖的gradle插件版本为7.2.0

在ncnn-android-yolov8-main\ncnn-android-yolov8\gradle\wrapper\gradle-wrapper.properties中:

修改使用的gradle版本为7.4-all版本。

重新sync项目

5.部署效果

手机打开->开发者模式,开启USB调试权限,手机和电脑用USB连接,允许调试

运行Android Studio项目到手机上

另外app默认先打开的是前置摄像头,通过分析代码,可以知道,将MainActivity.java的40的facing的初始值从0改成1可以让app默认先打开后置摄像头。

相关推荐
拭心35 分钟前
Google 提供的 Android 端上大模型组件:MediaPipe LLM 介绍
android
高山我梦口香糖43 分钟前
[react]searchParams转普通对象
开发语言·前端·javascript
black^sugar2 小时前
纯前端实现更新检测
开发语言·前端·javascript
带电的小王3 小时前
WhisperKit: Android 端测试 Whisper -- Android手机(Qualcomm GPU)部署音频大模型
android·智能手机·whisper·qualcomm
2401_857600953 小时前
SSM 与 Vue 共筑电脑测评系统:精准洞察电脑世界
前端·javascript·vue.js
2401_857600953 小时前
数字时代的医疗挂号变革:SSM+Vue 系统设计与实现之道
前端·javascript·vue.js
GDAL3 小时前
vue入门教程:组件透传 Attributes
前端·javascript·vue.js
小白学大数据3 小时前
如何使用Selenium处理JavaScript动态加载的内容?
大数据·javascript·爬虫·selenium·测试工具
梦想平凡3 小时前
PHP 微信棋牌开发全解析:高级教程
android·数据库·oracle
2402_857583493 小时前
基于 SSM 框架的 Vue 电脑测评系统:照亮电脑品质之路
前端·javascript·vue.js