Pandas实战100例 | 案例 22: 分组运算

案例 22: 分组运算

知识点讲解

Pandas 的 groupby 方法允许你对数据进行分组,并对每个分组应用聚合函数,如求和、求平均、求最大值等。这对于分类数据的分析非常重要。

  • 分组后求和 : groupby 后使用 sum 方法可以对每个分组的数值求和。
  • 分组后求平均 : groupby 后使用 mean 方法可以计算每个分组的平均值。
  • 分组后求最大值 : groupby 后使用 max 方法可以找到每个分组的最大值。
示例代码
python 复制代码
# 准备数据和示例代码的运行结果,用于案例 22

# 示例数据
data_grouped_operations = {
    'Category': ['A', 'B', 'A', 'B', 'C', 'C', 'C'],
    'Values': [10, 15, 20, 25, 5, 10, 15]
}
df_grouped_operations = pd.DataFrame(data_grouped_operations)

# 分组运算
grouped_sum = df_grouped_operations.groupby('Category').sum()
grouped_mean = df_grouped_operations.groupby('Category').mean()
grouped_max = df_grouped_operations.groupby('Category').max()

df_grouped_operations, grouped_sum, grouped_mean, grouped_max

在这个示例中,我们首先根据 Category 列对 DataFrame 进行分组。然后,我们对每个分组计算了总和、平均值和最大值。

示例代码运行结果

原始 DataFrame (df_grouped_operations):

  Category  Values
0        A      10
1        B      15
2        A      20
3        B      25
4        C       5
5        C      10
6        C      15

分组后的求和 (grouped_sum):

          Values
Category        
A             30
B             40
C             30

分组后的平均值 (grouped_mean):

          Values
Category        
A           15.0
B           20.0
C           10.0

分组后的最大值 (grouped_max):

          Values
Category        
A             20
B             25
C             15

这个案例说明了如何对分类数据进行有效的分组和聚合运算,这对于理解数据集中的不同类别是非常有用的。

相关推荐
Natural_yz31 分钟前
大数据学习17之Spark-Core
大数据·学习·spark
莫叫石榴姐2 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
魔珐科技3 小时前
以3D数字人AI产品赋能教育培训人才发展,魔珐科技亮相AI+教育创新与人才发展大会
大数据·人工智能
上优3 小时前
uniapp 选择 省市区 省市 以及 回显
大数据·elasticsearch·uni-app
samLi06204 小时前
【更新】中国省级产业集聚测算数据及协调集聚指数数据(2000-2022年)
大数据
Mephisto.java4 小时前
【大数据学习 | Spark-Core】Spark提交及运行流程
大数据·学习·spark
EasyCVR5 小时前
私有化部署视频平台EasyCVR宇视设备视频平台如何构建视频联网平台及升级视频转码业务?
大数据·网络·音视频·h.265
hummhumm5 小时前
第 22 章 - Go语言 测试与基准测试
java·大数据·开发语言·前端·python·golang·log4j
科技象限6 小时前
电脑禁用U盘的四种简单方法(电脑怎么阻止u盘使用)
大数据·网络·电脑
天冬忘忧7 小时前
Kafka 生产者全面解析:从基础原理到高级实践
大数据·分布式·kafka