Pandas实战100例 | 案例 22: 分组运算

案例 22: 分组运算

知识点讲解

Pandas 的 groupby 方法允许你对数据进行分组,并对每个分组应用聚合函数,如求和、求平均、求最大值等。这对于分类数据的分析非常重要。

  • 分组后求和 : groupby 后使用 sum 方法可以对每个分组的数值求和。
  • 分组后求平均 : groupby 后使用 mean 方法可以计算每个分组的平均值。
  • 分组后求最大值 : groupby 后使用 max 方法可以找到每个分组的最大值。
示例代码
python 复制代码
# 准备数据和示例代码的运行结果,用于案例 22

# 示例数据
data_grouped_operations = {
    'Category': ['A', 'B', 'A', 'B', 'C', 'C', 'C'],
    'Values': [10, 15, 20, 25, 5, 10, 15]
}
df_grouped_operations = pd.DataFrame(data_grouped_operations)

# 分组运算
grouped_sum = df_grouped_operations.groupby('Category').sum()
grouped_mean = df_grouped_operations.groupby('Category').mean()
grouped_max = df_grouped_operations.groupby('Category').max()

df_grouped_operations, grouped_sum, grouped_mean, grouped_max

在这个示例中,我们首先根据 Category 列对 DataFrame 进行分组。然后,我们对每个分组计算了总和、平均值和最大值。

示例代码运行结果

原始 DataFrame (df_grouped_operations):

复制代码
  Category  Values
0        A      10
1        B      15
2        A      20
3        B      25
4        C       5
5        C      10
6        C      15

分组后的求和 (grouped_sum):

复制代码
          Values
Category        
A             30
B             40
C             30

分组后的平均值 (grouped_mean):

复制代码
          Values
Category        
A           15.0
B           20.0
C           10.0

分组后的最大值 (grouped_max):

复制代码
          Values
Category        
A             20
B             25
C             15

这个案例说明了如何对分类数据进行有效的分组和聚合运算,这对于理解数据集中的不同类别是非常有用的。

相关推荐
零售ERP菜鸟2 小时前
范式革命:从“信息化”到“数字化”的本质跃迁
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
Hello.Reader2 小时前
Flink 对接 Google Cloud Storage(GCS)读写、Checkpoint、插件安装与生产配置指南
大数据·flink
浪子小院3 小时前
ModelEngine 智能体全流程开发实战:从 0 到 1 搭建多协作办公助手
大数据·人工智能
AEIC学术交流中心4 小时前
【快速EI检索 | ACM出版】2026年大数据与智能制造国际学术会议(BDIM 2026)
大数据·制造
wending-Y4 小时前
记录一次排查Flink一直重启的问题
大数据·flink
UI设计兰亭妙微4 小时前
医疗大数据平台电子病例界面设计
大数据·界面设计
初恋叫萱萱5 小时前
模型瘦身实战:用 `cann-model-compression-toolkit` 实现高效 INT8 量化
大数据
互联网科技看点5 小时前
孕期科学补铁,保障母婴健康-仁合益康蛋白琥珀酸铁口服溶液成为产妇优选方案
大数据
Dxy12393102165 小时前
深度解析 Elasticsearch:从倒排索引到 DSL 查询的实战突围
大数据·elasticsearch·搜索引擎
YongCheng_Liang6 小时前
零基础学大数据:大数据基础与前置技术夯实
大数据·big data