Pandas实战100例 | 案例 22: 分组运算

案例 22: 分组运算

知识点讲解

Pandas 的 groupby 方法允许你对数据进行分组,并对每个分组应用聚合函数,如求和、求平均、求最大值等。这对于分类数据的分析非常重要。

  • 分组后求和 : groupby 后使用 sum 方法可以对每个分组的数值求和。
  • 分组后求平均 : groupby 后使用 mean 方法可以计算每个分组的平均值。
  • 分组后求最大值 : groupby 后使用 max 方法可以找到每个分组的最大值。
示例代码
python 复制代码
# 准备数据和示例代码的运行结果,用于案例 22

# 示例数据
data_grouped_operations = {
    'Category': ['A', 'B', 'A', 'B', 'C', 'C', 'C'],
    'Values': [10, 15, 20, 25, 5, 10, 15]
}
df_grouped_operations = pd.DataFrame(data_grouped_operations)

# 分组运算
grouped_sum = df_grouped_operations.groupby('Category').sum()
grouped_mean = df_grouped_operations.groupby('Category').mean()
grouped_max = df_grouped_operations.groupby('Category').max()

df_grouped_operations, grouped_sum, grouped_mean, grouped_max

在这个示例中,我们首先根据 Category 列对 DataFrame 进行分组。然后,我们对每个分组计算了总和、平均值和最大值。

示例代码运行结果

原始 DataFrame (df_grouped_operations):

复制代码
  Category  Values
0        A      10
1        B      15
2        A      20
3        B      25
4        C       5
5        C      10
6        C      15

分组后的求和 (grouped_sum):

复制代码
          Values
Category        
A             30
B             40
C             30

分组后的平均值 (grouped_mean):

复制代码
          Values
Category        
A           15.0
B           20.0
C           10.0

分组后的最大值 (grouped_max):

复制代码
          Values
Category        
A             20
B             25
C             15

这个案例说明了如何对分类数据进行有效的分组和聚合运算,这对于理解数据集中的不同类别是非常有用的。

相关推荐
微光闪现3 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
大厂技术总监下海6 小时前
“Today I Learned”(TIL):一种比写博客更可持续的知识沉淀习惯
大数据·开源·github
房产中介行业研习社7 小时前
2026年1月房产中介管理系统排名
大数据·人工智能
有味道的男人7 小时前
平衡接入京东关键词API利弊的核心策略
大数据·运维
ZKNOW甄知科技7 小时前
IT自动分派单据:让企业服务流程更智能、更高效的关键技术
大数据·运维·数据库·人工智能·低代码·自动化
屿小夏.7 小时前
【Elasticsearch】Elasticsearch的分片和副本机制
大数据·elasticsearch·jenkins
Jinkxs7 小时前
Gradle - 与Elasticsearch集成 构建搜索服务项目
大数据·elasticsearch·搜索引擎
DBA大董9 小时前
云环境部署TDengine的那些坑
大数据·时序数据库·tdengine
阿坤带你走近大数据9 小时前
数据湖的构建实施方法论
大数据·数据湖·湖仓一体
安徽必海微马春梅_6688A9 小时前
实验a 信息化集成化生物信号采集与处理系统
大数据·人工智能·深度学习·信号处理