Pandas实战100例 | 案例 22: 分组运算

案例 22: 分组运算

知识点讲解

Pandas 的 groupby 方法允许你对数据进行分组,并对每个分组应用聚合函数,如求和、求平均、求最大值等。这对于分类数据的分析非常重要。

  • 分组后求和 : groupby 后使用 sum 方法可以对每个分组的数值求和。
  • 分组后求平均 : groupby 后使用 mean 方法可以计算每个分组的平均值。
  • 分组后求最大值 : groupby 后使用 max 方法可以找到每个分组的最大值。
示例代码
python 复制代码
# 准备数据和示例代码的运行结果,用于案例 22

# 示例数据
data_grouped_operations = {
    'Category': ['A', 'B', 'A', 'B', 'C', 'C', 'C'],
    'Values': [10, 15, 20, 25, 5, 10, 15]
}
df_grouped_operations = pd.DataFrame(data_grouped_operations)

# 分组运算
grouped_sum = df_grouped_operations.groupby('Category').sum()
grouped_mean = df_grouped_operations.groupby('Category').mean()
grouped_max = df_grouped_operations.groupby('Category').max()

df_grouped_operations, grouped_sum, grouped_mean, grouped_max

在这个示例中,我们首先根据 Category 列对 DataFrame 进行分组。然后,我们对每个分组计算了总和、平均值和最大值。

示例代码运行结果

原始 DataFrame (df_grouped_operations):

复制代码
  Category  Values
0        A      10
1        B      15
2        A      20
3        B      25
4        C       5
5        C      10
6        C      15

分组后的求和 (grouped_sum):

复制代码
          Values
Category        
A             30
B             40
C             30

分组后的平均值 (grouped_mean):

复制代码
          Values
Category        
A           15.0
B           20.0
C           10.0

分组后的最大值 (grouped_max):

复制代码
          Values
Category        
A             20
B             25
C             15

这个案例说明了如何对分类数据进行有效的分组和聚合运算,这对于理解数据集中的不同类别是非常有用的。

相关推荐
人大博士的交易之路1 小时前
龙虎榜——20251106
大数据·数学建模·数据分析·缠论·缠中说禅·龙虎榜
YangYang9YangYan1 小时前
中专服装设计专业职业发展指南
大数据·人工智能·数据分析
私域实战笔记2 小时前
企业微信SCRM工具该如何选择?从需求匹配出发的筛选思路
大数据·人工智能·企业微信·scrm·企业微信scrm
微盛企微增长小知识2 小时前
SCRM工具测评:助力企业微信私域运营的核心功能解析
大数据·人工智能·企业微信
武子康3 小时前
大数据-145 Apache Kudu 架构与实战:RowSet、分区与 Raft 全面解析
大数据·后端·nosql
青鱼入云3 小时前
ES索引配置字段解读
大数据·elasticsearch·搜索引擎
爱浦路 IPLOOK3 小时前
高校实验室建设方案解析:从规划到落地的全流程指南
大数据·人工智能
ClouGence3 小时前
百草味数据架构升级实践:打造 Always Ready 的企业级数据平台
大数据·数据库·数据分析
Lx3524 小时前
Flink SQL在实时数仓中的应用
大数据
玥轩_5215 小时前
Git命令速查手册
大数据·git·elasticsearch·gitee·github·命令速查