TDengine 中 TDgpt 异常检测的数据密度算法

基于数据密度/数据挖掘的检测算法

LOF[1]: Local Outlier Factor(LOF),局部离群因子/局部异常因子,是 Breunig 在 2000 年提出的一种基于密度的局部离群点检测算法,该方法适用于不同类簇密度分散情况迥异的数据。根据数据点周围的数据密集情况,首先计算每个数据点的局部可达密度,然后通过局部可达密度进一步计算得到每个数据点的一个离群因子。该离群因子即标识了一个数据点的离群程度,因子值越大,表示离群程度越高,因子值越小,表示离群程度越低。最后,输出离群程度最大的 topKtopKtopK 个点。

SQL 复制代码
--- 指定调用的算法为LOF,即可调用该算法
SELECT count(*)
FROM foo
ANOMALY_WINDOW(foo.i32, "algo=lof")

后续待添加基于数据挖掘检测算法

  • DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
  • K-Nearest Neighbors (KNN)
  • Principal Component Analysis (PCA)

第三方异常检测算法库

  • PyOD

参考文献

  1. Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; Sander, J. (2000). LOF: Identifying Density-based Local Outliers (PDF). Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. SIGMOD. pp. 93--104. doi:10.1145/335191.335388. ISBN 1-58113-217-4.
相关推荐
阿昭L22 分钟前
堆结构与堆排序
数据结构·算法
2***574224 分钟前
人工智能在智能投顾中的算法
人工智能·算法
D***776525 分钟前
适用于IntelliJ IDEA 2024.1.2部署Tomcat的完整方法,以及笔者踩的坑,避免高血压,保姆级教程
java·tomcat·intellij-idea
20岁30年经验的码农28 分钟前
Spring Security 6.x 安全实践指南
java
草莓熊Lotso29 分钟前
《算法闯关指南:动态规划算法--斐波拉契数列模型》--01.第N个泰波拉契数,02.三步问题
开发语言·c++·经验分享·笔记·其他·算法·动态规划
胖咕噜的稞达鸭1 小时前
自定义shell命令行解释器自制
java·开发语言
草莓熊Lotso1 小时前
Git 分支管理:从基础操作到协作流程(本地篇)
大数据·服务器·开发语言·c++·人工智能·git·sql
q***33374 小时前
oracle 12c查看执行过的sql及当前正在执行的sql
java·sql·oracle
mit6.8247 小时前
bfs|栈
算法
Y***h1878 小时前
第二章 Spring中的Bean
java·后端·spring