读写分离的手段——主从复制,解决读流量大大高于写流量的问题

应用场景

假设说有这么一种业务场景,读流量显著高于写流量,你要怎么优化呢。因为写是要加锁的,可能就会阻塞你读请求。而且其实读多写少的场景还很多见,比如电商平台,用户浏览n多个商品才会买一个。

大部分人的思路可能是建个缓存来帮助 MySQL 抗住大部分的查询请求。但是这不行,因为应用缓存的原则之一是保证缓存命中率足够高,不然很多请求会穿透缓存,最终打到数据库上。不同用户的请求基本上都不一样。

所以你要考虑优化数据库来抗住高查询请求,首先要做的就是区分读写流量区,这样才方便针对读流量做单独扩展,这个过程就是流量的"读写分离 "。这是提升MySQL并发性的首选方案,因为当单台 MySQL 无法满足要求时,就只能用多个具有相同数据的 MySQL 实例组成的集群来承担大量的读写请求。

模型种类

那如何实现主从复制呢?答案如下图所示

在完成主从复制之后,你就可以在写数据时只写主库,在读数据时只读从库,这样即使写请求会锁表或者锁记录,也不会影响读请求的执行。但是不是说越多从库越好,因为一个从库io线程就需要一个主库log dump线程。所以在实际使用中,一个主库一般跟 2~3 个从库(1 套数据库,1 主 2 从 1 备主),这就是一主多从的 MySQL 集群结构。

同时,主从复制有三种模式:

主从复制的延迟问题怎么解决呢?

比如下面这种情况

最推荐的是使用数据冗余 :可以在异步调用审核模块时,不仅仅发送商品 ID,而是发送审核模块需要的所有评论信息,借此避免在从库中重新查询数据(这个方案简单易实现,推荐你选择)。但你要注意每次调用的参数大小,过大的消息会占用网络带宽和通信时间。

或者加一层缓存 ,读先读缓存,然后不行再去从库。但这存在一致性问题。

或者直接查询主库,但是要提前明确查询的数据量不大,不然会出现主库写请求锁行,影响读请求的执行,最终对主库造成比较大的压力。

相关推荐
TDengine (老段)1 小时前
TDengine 数学函数 DEGRESS 用户手册
大数据·数据库·sql·物联网·时序数据库·iot·tdengine
TDengine (老段)1 小时前
TDengine 数学函数 GREATEST 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
安当加密2 小时前
云原生时代的数据库字段加密:在微服务与 Kubernetes 中实现合规与敏捷的统一
数据库·微服务·云原生
爱喝白开水a2 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
想ai抽2 小时前
深入starrocks-多列联合统计一致性探查与策略(YY一下)
java·数据库·数据仓库
武子康2 小时前
Java-152 深入浅出 MongoDB 索引详解 从 MongoDB B-树 到 MySQL B+树 索引机制、数据结构与应用场景的全面对比分析
java·开发语言·数据库·sql·mongodb·性能优化·nosql
longgyy2 小时前
5 分钟用火山引擎 DeepSeek 调用大模型生成小红书文案
java·数据库·火山引擎
ytttr8733 小时前
C# 仿QQ聊天功能实现 (SQL Server数据库)
数据库·oracle·c#
盒马coding4 小时前
第18节-索引-Partial-Indexes
数据库·postgresql
不剪发的Tony老师4 小时前
CloudDM:一站式数据库开发管理工具
数据库