开源项目汇总:机器学习前沿探索 | 开源专题 No.60

facebookresearch/xformers

Stars: 6.0k License: NOASSERTION

xFormers 是一个加速 Transformer 研究的工具包,主要功能如下:

  • 可自定义构建模块:无需样板代码即可使用的独立/可定制化构建模块。这些组件与领域无关,被视觉、NLP 等领域的研究人员广泛使用。
  • 以研究为先导:xFormers 包含在 pytorch 等主流库中还不可用的尖端组件。
  • 注重效率:因为迭代速度很重要,所以组件尽可能快速和内存高效。xFormers 包含了自己的 CUDA 核心,并在相关时候调用其他库。

google-research/tuning_playbook

Stars: 22.9k License: NOASSERTION

Deep Learning Tuning Playbook 是一个旨在帮助工程师和研究人员最大化深度学习模型性能的项目。该项目提供了一系列指导,重点关注超参数调优过程,并涵盖了其他与深度学习训练相关的重要问题。其核心优势和主要功能包括:

  • 提供选择合适模型架构、优化器和批次大小等方面的指南。
  • 强调科学方法来改进模型性能。
  • 探索与开发之间权衡 (exploration vs exploitation) 以及确定下一轮实验目标时需要考虑的因素。
  • 设计下一轮实验并决定是否采用训练流水线变更或超参数配置变更。

huggingface/transformers

Stars: 113.5k License: Apache-2.0

这个项目是一个名为 Transformers 的开源机器学习项目,它提供了数千种预训练模型,用于在文本、视觉和音频等不同领域执行任务。该项目主要功能包括:

  • 文本处理:支持超过 100 种语言的文本分类、信息抽取、问答、摘要生成和翻译等任务。
  • 图像处理:支持图像分类、目标检测和分割等任务。
  • 音频处理:支持语音识别和音频分类等任务。

此外,Transformer 模型还可以对多个领域进行联合操作,例如表格问答、光学字符识别以及从扫描文件中提取信息等。该项目具有以下关键特点和核心优势:

  • 提供 API 快速下载并使用预训练模型,可根据自己的数据集进行微调,并与社区共享。
  • 支持 Jax,PyTorch 和 TensorFlow 三大流行深度学习库之间无缝集成,在加载推理前轻松地训练您的模型。

stas00/ml-engineering

Stars: 1.0k License: CC-BY-SA-4.0

这个项目是一个开放的方法论集合,旨在帮助成功训练大型语言模型和多模态模型。

  • 提供了调试软件和硬件故障、容错性、性能优化等方面的指导
  • 支持多节点网络通信和模型并行计算
  • 包含有关张量精度/数据类型、训练超参数和初始化以及可重现性等内容的信息

facebookresearch/detectron2

Stars: 26.4k License: Apache-2.0

Detectron2 是 Facebook AI Research 的下一代库,提供了最先进的检测和分割算法。它是 Detectron 和 maskrcnn-benchmark 的继任者,在 Facebook 中支持许多计算机视觉研究项目和生产应用程序。

  • 包括全景分割、Densepose、级联 R-CNN、旋转边界框等新功能
  • 作为一个库来支持构建在其之上的研究项目
  • 模型可以导出到 TorchScript 格式或 Caffe2 格式进行部署
  • 训练速度更快

mlflow/mlflow

Stars: 15.4k License: Apache-2.0

MLflow 是一个机器学习生命周期平台,主要功能包括跟踪实验、将代码打包成可复现的运行环境以及分享和部署模型。其核心优势和特点如下:

  • MLflow Tracking:记录参数、代码和结果,并提供交互式 UI 进行比较。
  • MLflow Projects:使用 Conda 和 Docker 对代码进行打包,实现可复现性,并与他人共享。
  • MLflow Models:提供模型打包格式和工具,可以轻松地在批处理和实时评分等平台上部署相同的模型 (来自任何机器学习库)。
  • MLflow Model Registry:集中管理 ML 流程中完整生命周期所需的模型存储、APIs 和用户界面。
相关推荐
SEO_juper18 分钟前
AI SEO实战:利用人工智能提升网站排名与流量的完整策略
人工智能·搜索引擎·百度·ai·seo·数字营销
暖阳之下19 分钟前
学习周报二十
人工智能·深度学习·学习
Doc.S28 分钟前
【保姆级教程】在AutoDL容器中部署EGO-Planner,实现无人机动态避障规划
人工智能·python·信息可视化·机器人
乌恩大侠29 分钟前
【东枫电子】AI-RAN 开发者套件,适用于6G科研与教学
人工智能·usrp
A_SKYLINE30 分钟前
低空无人机“一网统飞”深度解构:从技术内核到产业落地,重构低空经济操作系统
人工智能·重构·无人机·产品经理·低空经济
IT_陈寒30 分钟前
React性能优化:10个90%开发者不知道的useEffect正确使用姿势
前端·人工智能·后端
Apifox33 分钟前
如何在 Apifox 中使用 OpenAPI 的 discriminator?
前端·后端·测试
yuuki23323333 分钟前
【数据结构】双向链表的实现
c语言·数据结构·后端
朝新_44 分钟前
【SpringBoot】玩转 Spring Boot 日志:级别划分、持久化、格式配置及 Lombok 简化使用
java·spring boot·笔记·后端·spring·javaee
蒋星熠1 小时前
多模态技术深度探索:融合视觉与语言的AI新范式
人工智能·python·深度学习·机器学习·分类·数据挖掘·多分类