(25)Linux IPC 进程间通信&&系统调用:pipe接口

一、进程间通信(IPC)

1、为什么要进程间通信?

我们在之前讲过 "进程之间是具有独立性" 的,如果进程间想交互数据,成本会非常高!

因为独立性之本质即 "封闭",进程们你封闭你的我封闭我的,那么进程间的交流可谓是窒碍难行。

进程间的通信说白了就是 "数据交互",我们需要多进程进行协同处理一件事情。

  • 刚才说的是宏观上的概念,下面我们来看看具体的、为什么要进行通信:
  • 数据传输:一个进程需要将它的数据发送给另一个进程
  • 资源共享:多个进程之间共享资源
  • 通知事件:一个进程需要向另一个或一组进程发送讯息,通知它 (它们) 发生了某种事件(比如进程终止时要通知父进程)
  • 进程控制:有些进程希望完全控制另一个进程的执行(如 debug 进程),此时控制进程希望能够拦截另一个进程的所有陷阱和异常,并能够及时知道它的状态改变,属于 "闭环控制"。

进程间通信的必要性:

  • 单进程的,那么也就无法使用并发能力,更加无法实现多进程协同
  • 传输数据,同步执行流,消息通知等

2、程间通信的技术背景

  • 1.进程是具有独立性的。虚拟地址空间+页表 保证进程运行的独立性(进程内核数据结构+进程的代码和数据)
  • 2.通信成本会比较高!

3、进程间通信的本质理解

  • 1.进程间通信的前提,首先需要让不同的进程看到同一·块"内存"(特定的结构组织的)
  • 2.所以你所谓的进程看到同一块"内存",属于哪一个进程呢?不能隶属于任何一个进程,而应该更强谢共享

进程间通信的方式 也有一些标准

1.Linux原生能提供 - 管道-->匿名 命名

2.Systemy ---多进程 -- 单机通信

共享内存

消息队列(不常用)

信号量(不讲 - 原理)

3.posix-- 多线程----网络通信

标准更多在我们使用者看来,都是接口上具有一定的规律

二、管道(PIPE)

1、何为管道?

何为管道?管道是 系统中最古老的 IPC 形式,

将一个进程连接到另一个进程的数据流称为管道 (Pipe)。

下面我们先来讲解 匿名管道 (Anonymous Pipe) !

2、匿名管道(Anonymous Pipe)

匿名管道是计算机进程间的一种 单工 先进先出通信机制,全双工通信 通常需要两个匿名管道。

举个例子: 假设内存中有两个独立的进程 ,我们想让 之间进行进程间通信。

* 令 先把数据拷贝到磁盘上,再让 去读取该数据,如下图所示:

​我们可以通过这个例子明白一个道理:通信之前,要让不同的进程看到同一份资源。

现阶段我们要学的进程间通信,不是如何通信,而是先去关注它们是如何看到同一份资源的。

那么在进程通信之前,如何做到让进程 "先看到同一份资源" 呢?

资源的不同,决定了不同种类的通信方式! 而管道,就是提供共享资源的一种手段。

我们知道,文件在内存和磁盘之间来回切换是非常耗时的,因此进程间通信大多都是内存级别的。

即在内存内部重建一块 "小区域" 进行通信,示意图如下:

对我们来说,我们 echo 一个 hello,写到文件中,实际上这就算通信了

但是我们要讨论的不是这种通信!我们讨论的是内存级的通信!

3、管道通信的原理

我们在前几章中学了文件描述符 (fd) 的知识点,我们将其系统中存在的匿名管道相结合:

首先,一个进程维护自己进程对应的文件描述符表file_struct,而 file_struct 中有对应的数组。

数字里存的是 struct file* fd_array[],这里面存的就是打开文件的文件指针。

其中 0,1,2 被默认占用,这个在之前我们也做过讲解,对应 stdin, stdout, stdin,这里不再赘述。

如果我们今天打开一个文件,OS 为了管理文件,需要将磁盘中的文件的属性信息加载到内存里。

对该文件形成 struct file,包含了文件的所有属性,对应了文件的:

  • ① 操作方法
  • ② file 自己内部的缓冲区

如果我们让该进程 fork 创建一个子进程,

在做拷贝时是不需要将 struct file 本身给子进程拷贝一份的。

创建子进程 task_struct 和 file_struct 是需要被拷贝的,但是 struct file 是不需要的。

"创建进程,和我文件有什么关系?"

这也就是为什么我们创建 fork 子进程之后,让父子打印时,都会像同一个显示器打印的原因。

**结论:**struct file 一定能找到对应缓冲区的操作方法和 file 自己内部缓冲区。

4、管道通信的特点

如何做到让不同的进程,看到同一份资源的呢?---fork让子进程继承的能够让具有血缘关系的进程进行进程间通信- 常用于父子进程

输出型参数,期望通过调用它,得到被打的文件fd

特点:

  1. 管道是用来进行具有血缘关系的进程进性进程间通信-- 常用于父子通信
  2. 管道具有通过让进程间协同,提供了访问控制!
  3. 管道提供的是面向流式的通信服务 -- 面向字节流 -- 协议
  4. 管道是基丁文件的,文件的生命周期是随进程的,管道的生命周期是随进程的!
  5. 管道是单向通信的 ,就是半双工通信的一种特殊情况

其中上面第二点理解:

  • 写快,读慢,写满不能在写了
  • 写慢,读快,管道没有数据的时候,读必须等待
  • 写关,读0,标识读到了文件结尾
  • 读关,写继续写,0S终止写进程

管道是一个文件 - -读取 -- 具有访问控制

显示器也是一个文件,父子同时往显示器写入的时候,有没有说·个会等另·个的情况呢?

--缺乏访问控制

5、 系统调用:pipe 接口

Linux 给我们提供了 pipe 接口,只需调一下 pipe 就会在底层自动把文件以读和写的方式打开。

你会得到两个 fd,并且会被写进 pipefd[2] 数组中:

cpp 复制代码
#include <unistd.h>
int pipe(int pipefd[2]);   // 数组中分别存储第一次 O_RDONLY 和 O_WRONLY

你可以理解为:pipe 内部封装了 open,并且它 open 了两次:

  • 第一次 open:以 O_RDONLY 读的方式打开
  • 第二次 open:以 O_WRONLY 写的方式打开

最后,把读写 fd 分别放在 pipefd 数组的 0 下标和 1 下标中,这就帮你创建了一个共享文件。

并且别忘了 pipe 可是系统调用,创建文件时就在内核中将文件类型初始化 i_pipe,

让它指向的是一个管道文件,指向管道信息,也就不用和磁盘产生关联了。

当父进程没有写入的时候,子进程在等,所以父进程写入之后,

子进程才能 read(会返回)到数据,子进程打印读取数据要以父进程的节奏为主。

思考:父进程和子进程读写的时候(向显示器写入也是文件),是有一定顺序性的。父子进程各自 printf 的时候,会有顺序吗?

答案是不会。管道内部没有数据,reader 就必须阻塞等待(read),管道内部如果数据被写满,此时 writer 就必须阻塞等待(write),等管道有数据。

完全乱序的地方就是缺乏访问控制,管道内部自带访问控制机制。

最后帮助大家理解管道,准备了一个程序,可以自行尝试理解:

makefile:

cpp 复制代码
mypipe:mypipe.cc
	g++ -o $@ $^ -std=c++11 #-DDEBUG
.PHONY:clean
clean:
	rm -f mypipe

mypipe.cc:

cpp 复制代码
#include <iostream>
#include <string>
#include <cstdio>
#include <cstring>
#include <assert.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

using namespace std;

// 为什么不定义全局buffer来进行通信呢?? 因为有写时拷贝的存在,无法更改通信!

int main()
{
    // 1. 创建管道
    int pipefd[2] = {0}; // pipefd[0(嘴巴,读书)]: 读端 , pipefd[1(钢笔,写)]: 写端
    int n = pipe(pipefd);
    assert(n != -1); // debug assert, release assert
    (void)n;

#ifdef DEBUG
    cout << "pipefd[0]: " << pipefd[0] << endl; // 3
    cout << "pipefd[1]: " << pipefd[1] << endl; // 4
#endif
    // 2. 创建子进程
    pid_t id = fork();
    assert(id != -1);
    if (id == 0)
    {
        //子进程 - 读
        // 3. 构建单向通信的信道,父进程写入,子进程读取
        // 3.1 关闭子进程不需要的fd
        close(pipefd[1]);
        char buffer[1024 * 8];
        while (true)
        {
            // sleep(20);
            // 写入的一方,fd没有关闭,如果有数据,就读,没有数据就等
            // 写入的一方,fd关闭, 读取的一方,read会返回0,表示读到了文件的结尾!
            ssize_t s = read(pipefd[0], buffer, sizeof(buffer) - 1);
            if (s > 0)
            {
                buffer[s] = 0;
                cout << "child get a message[" << getpid() << "] Father# " << buffer << endl;
            }
            else if(s == 0)
            {
                cout << "writer quit(father), me quit!!!" << endl;
                break;
            }
        }
        // close(pipefd[0]);
        exit(0);
    }
    //父进程 - 写
    // 3. 构建单向通信的信道
    // 3.1 关闭父进程不需要的fd
    close(pipefd[0]);
    string message = "我是父进程,我正在给你发消息";
    int count = 0;
    char send_buffer[1024 * 8];
    while (true)
    {
        // 3.2 构建一个变化的字符串
        snprintf(send_buffer, sizeof(send_buffer), "%s[%d] : %d",
                 message.c_str(), getpid(), count++);
        // 3.3 写入
        write(pipefd[1], send_buffer, strlen(send_buffer));
        // 3.4 故意sleep
        sleep(1);
        cout << count << endl;
        if (count == 5){
            cout << "writer quit(father)" << endl;
            break;
        }
    }
    close(pipefd[1]);
    pid_t ret = waitpid(id, nullptr, 0);
    cout << "id : " << id << " ret: " << ret <<endl;
    assert(ret > 0); 
    (void)ret;

    return 0;
}

运行结果:

感谢阅读!!!!!

相关推荐
鹏大师运维3 分钟前
【功能介绍】信创终端系统上各WPS版本的授权差异
linux·wps·授权·麒麟·国产操作系统·1024程序员节·统信uos
筱源源5 分钟前
Elasticsearch-linux环境部署
linux·elasticsearch
萨格拉斯救世主8 分钟前
jenkins使用slave节点进行node打包报错问题处理
运维·jenkins
川石课堂软件测试19 分钟前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
龙哥说跨境27 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
pk_xz1234562 小时前
Shell 脚本中变量和字符串的入门介绍
linux·运维·服务器
小珑也要变强2 小时前
Linux之sed命令详解
linux·运维·服务器
海绵波波1072 小时前
Webserver(4.3)TCP通信实现
服务器·网络·tcp/ip
九河云4 小时前
AWS账号注册费用详解:新用户是否需要付费?
服务器·云计算·aws
Lary_Rock4 小时前
RK3576 LINUX RKNN SDK 测试
linux·运维·服务器