旋转的表示

欢迎访问我的博客首页


旋转的表示

三维空间内的旋转可以由三维旋转向量 n θ \bm n \theta nθ 表示。其中,单位向量 n \bm n n 表示旋转轴, θ \theta θ 表示旋转角度。旋转向量由一个轴和一个角表示,因此又称轴角,它是李代数 s o ( 3 ) \frak {so}(3) so(3) 空间中的向量。

1.旋转轴的性质


我们使用 n ∧ \bm n^ \land n∧ 表示向量 n \bm n n 的反对称矩阵,则它的平方

n ∧ 2 = [ 0 − n 3 n 2 n 3 0 − n 1 − n 2 n 1 0 ] [ 0 − n 3 n 2 n 3 0 − n 1 − n 2 n 1 0 ] = [ − n 2 2 − n 3 2 n 1 n 2 n 1 n 3 n 1 n 2 − n 1 2 − n 3 2 n 2 n 3 n 1 n 3 n 2 n 3 − n 1 2 − n 2 2 ] \bm n^ {\land 2} = \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} = \begin{bmatrix} -n_2^2 - n_3^2 & n_1n_2 & n_1n_3 \\ n_1n_2 & -n_1^2 - n_3^2 & n_2n_3 \\ n_1n_3 & n_2n_3 & -n_1^2 - n_2^2 \end{bmatrix} n∧2= 0n3−n2−n30n1n2−n10 0n3−n2−n30n1n2−n10 = −n22−n32n1n2n1n3n1n2−n12−n32n2n3n1n3n2n3−n12−n22

于是

I + n ∧ 2 = n n T (1) \bm I + \bm n^ {\land 2} = \bm n \bm n^{\rm T} \tag{1} I+n∧2=nnT(1)

2.罗德里格斯公式


罗德里格斯公式用于根据旋转向量(即,轴角, s o ( 3 ) \frak {so}(3) so(3) 空间中的向量)求旋转矩阵。它有两种等价的表示形式:

R = { I + n ∧ 2 ( 1 − c o s θ ) + n ∧ s i n θ I c o s θ + n n T ( 1 − c o s θ ) + n ∧ s i n θ \bm R = \left\{\begin{aligned} & \bm I + \bm n^ {\land 2}(1 - cos\theta) + \bm n^ \land sin\theta \\ & \bm I cos\theta + \bm n \bm n^{\rm T} (1 - cos\theta) + \bm n^ \land sin\theta \end{aligned}\right. R={I+n∧2(1−cosθ)+n∧sinθIcosθ+nnT(1−cosθ)+n∧sinθ

使用公式 (1) 可以证明这两种形式等价。

3.右雅可比矩阵


右雅可比矩阵也有两种等价的形式:

J r = { I + n ∧ 2 ( 1 − s i n θ θ ) − n ∧ 1 − c o s θ θ I s i n θ θ + n n T ( 1 − s i n θ θ ) − n ∧ 1 − c o s θ θ \bm J_r = \left\{\begin{aligned} & \bm I + \bm n^ {\land 2} (1 - \frac{sin\theta}{\theta}) - \bm n^ \land \frac{1 - cos\theta}{\theta} \\ & \bm I \frac{sin\theta}{\theta} + \bm n \bm n^{\rm T} (1 - \frac{sin\theta}{\theta}) - \bm n^ \land \frac{1 - cos\theta}{\theta} \end{aligned}\right. Jr=⎩ ⎨ ⎧I+n∧2(1−θsinθ)−n∧θ1−cosθIθsinθ+nnT(1−θsinθ)−n∧θ1−cosθ

使用公式 (1) 可以证明这两种形式等价。以 − θ -\theta −θ 替换 θ \theta θ 即可得到左雅可比矩阵。

相关推荐
WWZZ20255 天前
ORB_SLAM2原理及代码解析:单应矩阵H、基础矩阵F求解
线性代数·算法·计算机视觉·机器人·slam·基础矩阵·单应矩阵
元让_vincent5 天前
论文Review SLAM R3LIVE | ICRA2022 港大MARS | 可以生成Mesh的激光视觉惯性SLAM
3d·机器人·图形渲染·slam·建图
WWZZ20256 天前
ORB_SLAM2原理及代码解析:Tracking::CreateInitialMapMonocular() 函数
人工智能·opencv·算法·计算机视觉·机器人·slam·感知
放羊郎9 天前
SLAM算法分类对比
人工智能·算法·分类·数据挖掘·slam·视觉·激光
极客代码11 天前
第五篇:后端优化——位姿图的灵魂--从图优化到滑动窗口的联合状态估计
python·深度学习·计算机视觉·视觉里程计·slam·回环检测·地图构建
点云SLAM15 天前
GTSAM 中自定义因子(Custom Factor)的详解和实战示例
算法·机器人·slam·后端优化·gtsam·gtsam自定义因子·因子图
杀生丸学AI15 天前
【无标题】SceneSplat:基于视觉-语言预训练的3DGS场景理解
3d·aigc·slam·语义分割·三维重建·视觉大模型·空间智能
点云SLAM1 个月前
四元数 (Quaternion)在位姿(SE(3))表示下的各类导数(雅可比)知识(2)
人工智能·线性代数·算法·机器学习·slam·四元数·李群李代数
deepwater_zone1 个月前
SLAM(同步定位与建图)
slam
点云SLAM1 个月前
四元数 (Quaternion)与李群SE(3)知识点(1)
线性代数·slam·四元数·旋转矩阵·位姿表示·李群se(3)·四元数插值