旋转的表示

欢迎访问我的博客首页


旋转的表示

三维空间内的旋转可以由三维旋转向量 n θ \bm n \theta nθ 表示。其中,单位向量 n \bm n n 表示旋转轴, θ \theta θ 表示旋转角度。旋转向量由一个轴和一个角表示,因此又称轴角,它是李代数 s o ( 3 ) \frak {so}(3) so(3) 空间中的向量。

1.旋转轴的性质


我们使用 n ∧ \bm n^ \land n∧ 表示向量 n \bm n n 的反对称矩阵,则它的平方

n ∧ 2 = [ 0 − n 3 n 2 n 3 0 − n 1 − n 2 n 1 0 ] [ 0 − n 3 n 2 n 3 0 − n 1 − n 2 n 1 0 ] = [ − n 2 2 − n 3 2 n 1 n 2 n 1 n 3 n 1 n 2 − n 1 2 − n 3 2 n 2 n 3 n 1 n 3 n 2 n 3 − n 1 2 − n 2 2 ] \bm n^ {\land 2} = \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} = \begin{bmatrix} -n_2^2 - n_3^2 & n_1n_2 & n_1n_3 \\ n_1n_2 & -n_1^2 - n_3^2 & n_2n_3 \\ n_1n_3 & n_2n_3 & -n_1^2 - n_2^2 \end{bmatrix} n∧2= 0n3−n2−n30n1n2−n10 0n3−n2−n30n1n2−n10 = −n22−n32n1n2n1n3n1n2−n12−n32n2n3n1n3n2n3−n12−n22

于是

I + n ∧ 2 = n n T (1) \bm I + \bm n^ {\land 2} = \bm n \bm n^{\rm T} \tag{1} I+n∧2=nnT(1)

2.罗德里格斯公式


罗德里格斯公式用于根据旋转向量(即,轴角, s o ( 3 ) \frak {so}(3) so(3) 空间中的向量)求旋转矩阵。它有两种等价的表示形式:

R = { I + n ∧ 2 ( 1 − c o s θ ) + n ∧ s i n θ I c o s θ + n n T ( 1 − c o s θ ) + n ∧ s i n θ \bm R = \left\{\begin{aligned} & \bm I + \bm n^ {\land 2}(1 - cos\theta) + \bm n^ \land sin\theta \\ & \bm I cos\theta + \bm n \bm n^{\rm T} (1 - cos\theta) + \bm n^ \land sin\theta \end{aligned}\right. R={I+n∧2(1−cosθ)+n∧sinθIcosθ+nnT(1−cosθ)+n∧sinθ

使用公式 (1) 可以证明这两种形式等价。

3.右雅可比矩阵


右雅可比矩阵也有两种等价的形式:

J r = { I + n ∧ 2 ( 1 − s i n θ θ ) − n ∧ 1 − c o s θ θ I s i n θ θ + n n T ( 1 − s i n θ θ ) − n ∧ 1 − c o s θ θ \bm J_r = \left\{\begin{aligned} & \bm I + \bm n^ {\land 2} (1 - \frac{sin\theta}{\theta}) - \bm n^ \land \frac{1 - cos\theta}{\theta} \\ & \bm I \frac{sin\theta}{\theta} + \bm n \bm n^{\rm T} (1 - \frac{sin\theta}{\theta}) - \bm n^ \land \frac{1 - cos\theta}{\theta} \end{aligned}\right. Jr=⎩ ⎨ ⎧I+n∧2(1−θsinθ)−n∧θ1−cosθIθsinθ+nnT(1−θsinθ)−n∧θ1−cosθ

使用公式 (1) 可以证明这两种形式等价。以 − θ -\theta −θ 替换 θ \theta θ 即可得到左雅可比矩阵。

相关推荐
lovod3 天前
视觉SLAM十四讲合集
计算机视觉·slam·视觉slam·g2o·ba·位姿图
chen_jared6 天前
slam十四讲第五章习题:相机内参变化与SLAM快门选择
数码相机·slam·标定
s09071366 天前
【声呐图像处理】水下前视声呐(FLS)图像拼接与建图全流程解析
图像处理·slam·图像拼接·前视声呐·相位相关
点云SLAM14 天前
点云数据分割算法之-聚合层次聚类(AHC)平面识别
聚类·slam·点云数据处理·点云分割·平面识别·聚合层次聚类·有序点云数据
点云SLAM15 天前
MAP(最大后验)估计理论(2)以及相关应用
机器人·slam·卡尔曼滤波算法·map估计理论·lm算法·非线性最小二乘问题线性化
点云SLAM21 天前
SLAM文献之-A Quick Guide for the Iterated Extended Kalman Filter on Manifolds
人工智能·机器人·slam·三维重建·fast-lio·卡尔曼滤波算法·iekf
大鹅同志22 天前
Ubuntu 20.04使用MB-System分析与可视化EM3000数据
数据库·3d·ros·slam·mb-system
点云SLAM23 天前
C++ 静态初始化顺序问题(SIOF)和SLAM / ROS 工程实战问题
开发语言·c++·slam·静态初始化顺序问题·工程实战技术·c++static 关键字
雨幕丶1 个月前
激光SLAM 回环检测---STD(A Stable Triangle Descriptor for 3D place recognition)
slam
点云SLAM1 个月前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用