旋转的表示

欢迎访问我的博客首页


旋转的表示

三维空间内的旋转可以由三维旋转向量 n θ \bm n \theta nθ 表示。其中,单位向量 n \bm n n 表示旋转轴, θ \theta θ 表示旋转角度。旋转向量由一个轴和一个角表示,因此又称轴角,它是李代数 s o ( 3 ) \frak {so}(3) so(3) 空间中的向量。

1.旋转轴的性质


我们使用 n ∧ \bm n^ \land n∧ 表示向量 n \bm n n 的反对称矩阵,则它的平方

n ∧ 2 = [ 0 − n 3 n 2 n 3 0 − n 1 − n 2 n 1 0 ] [ 0 − n 3 n 2 n 3 0 − n 1 − n 2 n 1 0 ] = [ − n 2 2 − n 3 2 n 1 n 2 n 1 n 3 n 1 n 2 − n 1 2 − n 3 2 n 2 n 3 n 1 n 3 n 2 n 3 − n 1 2 − n 2 2 ] \bm n^ {\land 2} = \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{bmatrix} = \begin{bmatrix} -n_2^2 - n_3^2 & n_1n_2 & n_1n_3 \\ n_1n_2 & -n_1^2 - n_3^2 & n_2n_3 \\ n_1n_3 & n_2n_3 & -n_1^2 - n_2^2 \end{bmatrix} n∧2= 0n3−n2−n30n1n2−n10 0n3−n2−n30n1n2−n10 = −n22−n32n1n2n1n3n1n2−n12−n32n2n3n1n3n2n3−n12−n22

于是

I + n ∧ 2 = n n T (1) \bm I + \bm n^ {\land 2} = \bm n \bm n^{\rm T} \tag{1} I+n∧2=nnT(1)

2.罗德里格斯公式


罗德里格斯公式用于根据旋转向量(即,轴角, s o ( 3 ) \frak {so}(3) so(3) 空间中的向量)求旋转矩阵。它有两种等价的表示形式:

R = { I + n ∧ 2 ( 1 − c o s θ ) + n ∧ s i n θ I c o s θ + n n T ( 1 − c o s θ ) + n ∧ s i n θ \bm R = \left\{\begin{aligned} & \bm I + \bm n^ {\land 2}(1 - cos\theta) + \bm n^ \land sin\theta \\ & \bm I cos\theta + \bm n \bm n^{\rm T} (1 - cos\theta) + \bm n^ \land sin\theta \end{aligned}\right. R={I+n∧2(1−cosθ)+n∧sinθIcosθ+nnT(1−cosθ)+n∧sinθ

使用公式 (1) 可以证明这两种形式等价。

3.右雅可比矩阵


右雅可比矩阵也有两种等价的形式:

J r = { I + n ∧ 2 ( 1 − s i n θ θ ) − n ∧ 1 − c o s θ θ I s i n θ θ + n n T ( 1 − s i n θ θ ) − n ∧ 1 − c o s θ θ \bm J_r = \left\{\begin{aligned} & \bm I + \bm n^ {\land 2} (1 - \frac{sin\theta}{\theta}) - \bm n^ \land \frac{1 - cos\theta}{\theta} \\ & \bm I \frac{sin\theta}{\theta} + \bm n \bm n^{\rm T} (1 - \frac{sin\theta}{\theta}) - \bm n^ \land \frac{1 - cos\theta}{\theta} \end{aligned}\right. Jr=⎩ ⎨ ⎧I+n∧2(1−θsinθ)−n∧θ1−cosθIθsinθ+nnT(1−θsinθ)−n∧θ1−cosθ

使用公式 (1) 可以证明这两种形式等价。以 − θ -\theta −θ 替换 θ \theta θ 即可得到左雅可比矩阵。

相关推荐
什么都不会的小澎友5 天前
相机雷达外参标定综述“Automatic targetless LiDAR–camera calibration: a survey“
slam
nevergiveup_202418 天前
ORB-SLAM2 ---- 非线性优化在SLAM中的应用(一)
人工智能·笔记·算法·slam
智驾机器人技术前线1 个月前
近期两篇NeRF/3DGS-based SLAM方案赏析:TS-SLAM and MBA-SLAM
3d·slam·nerf·3dgs
CA7271 个月前
【视觉SLAM】2-三维空间刚体运动的数学表示
slam·三维旋转·四元数
CA7271 个月前
【视觉SLAM】4b-特征点法估计相机运动之PnP 3D-2D
slam
大山同学1 个月前
RA-L开源:Light-LOAM: 基于图匹配的轻量级激光雷达里程计和地图构建
语言模型·机器人·去中心化·slam·感知定位
大山同学1 个月前
DPGO:异步和并行分布式位姿图优化 2020 RA-L best paper
人工智能·分布式·语言模型·去中心化·slam·感知定位
OAK中国_官方1 个月前
OAK相机:纯视觉SLAM在夜晚的应用
人工智能·机器学习·slam
极客代码2 个月前
【计算机视觉】深入浅出SLAM技术原理
人工智能·python·算法·计算机视觉·机器人·slam·地图构建
大山同学2 个月前
最新开源DCL-SLAM:一种用于机器人群体的分布式协作激光雷达 SLAM 框架
人工智能·分布式·机器人·开源·slam·感知定位