word2vec模型的技术细节和大致的训练方法,让我们来看看它们的实现。具体地说,用于预训练词嵌入模型的数据集开始:数据的原始格式将被转换为可以在训练期间迭代的小批量。
python
import math
import os
import random
import torch
from d2l import torch as d2l
读取数据集
我们在这里使用的数据集是Penn Tree Bank(PTB)。该语料库取自"华尔街日报"的文章,分为训练集、验证集和测试集。在原始格式中,文本文件的每一行表示由空格分隔的一句话。在这里,我们将每个单词视为一个词元。
python
#@save
d2l.DATA_HUB['ptb'] = (d2l.DATA_URL + 'ptb.zip',
'319d85e578af0cdc590547f26231e4e31cdf1e42')
#@save
def read_ptb():
"""将PTB数据集加载到文本行的列表中"""
data_dir = d2l.download_extract('ptb')
# Readthetrainingset.
with open(os.path.join(data_dir, 'ptb.train.txt')) as f:
raw_text = f.read()
return [line.split() for line in raw_text.split('\n')]
sentences = read_ptb()
f'# sentences数: {len(sentences)}'
Downloading ../data/ptb.zip from http://d2l-data.s3-accelerate.amazonaws.com/ptb.zip...
在读取训练集之后,我们为语料库构建了一个词表,其中出现次数少于10次的任何单词都将由"<unk>"词元替换。请注意,原始数据集还包含表示稀有(未知)单词的"<unk>"词元。
python
vocab = d2l.Vocab(sentences, min_freq=10)
f'vocab size: {len(vocab)}'
'vocab size: 6719'