深度学习中的正则化指的是什么?

在深度学习中,正则化是一种技术,旨在减少模型的过拟合,提高其在未见数据上的泛化能力。过拟合是指模型在训练数据上表现得非常好,但在新数据上表现不佳的情况。正则化通过对模型添加某种形式的约束或惩罚来实现这一目标。以下是几种常见的正则化技术:

L1 和 L2 正则化:

L1 正则化(Lasso 正则化):向损失函数添加参数权重的绝对值的和。 这可以导致模型中某些权重变为零,从而产生一个更简单、更稀疏的模型。

L2 正则化(岭回归或权重衰减):向损失函数添加参数权重的平方和。 这通常会使权重变得更小,但不会完全消除,有助于减少模型复杂度。

Dropout:

在训练过程中随机"丢弃"(即暂时移除)网络中的一些神经元或连接。这防止网络对特定的神经元或路径过度依赖,从而提高其泛化能力。

早停(Early Stopping):

在训练过程中,当验证集上的性能不再提升时停止训练。这有助于防止模型在训练数据上过度训练。

数据增强(Data Augmentation):

通过对训练数据进行变化(如旋转、缩放、剪裁等)来增加数据的多样性,这有助于模型学习到更一般的特征。

批量归一化(Batch Normalization):

对每个小批量数据进行归一化处理,有助于稳定和加速神经网络的训练,虽然它主要是为了解决内部协变量偏移问题,但也被发现可以轻微地起到正则化的作用。

正则化的目标是在保持模型性能的同时减少其复杂度,从而避免过拟合,使模型在新数据上的表现更为稳定和准确。

相关推荐
贾全2 分钟前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
每日摸鱼大王8 分钟前
互联网摸鱼日报(2025-07-01)
人工智能
GIS小天17 分钟前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
我是小哪吒2.029 分钟前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉030732 分钟前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
荔枝吻1 小时前
【AI总结】Git vs GitHub vs GitLab:深度解析三者联系与核心区别
人工智能·git·github
Jamie201901062 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
云卓SKYDROID2 小时前
无人机载重模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
云卓SKYDROID2 小时前
无人机RTK技术要点与难点分析
人工智能·无人机·科普·高科技·云卓科技
麻雀无能为力3 小时前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机