深度学习中的正则化指的是什么?

在深度学习中,正则化是一种技术,旨在减少模型的过拟合,提高其在未见数据上的泛化能力。过拟合是指模型在训练数据上表现得非常好,但在新数据上表现不佳的情况。正则化通过对模型添加某种形式的约束或惩罚来实现这一目标。以下是几种常见的正则化技术:

L1 和 L2 正则化:

L1 正则化(Lasso 正则化):向损失函数添加参数权重的绝对值的和。 这可以导致模型中某些权重变为零,从而产生一个更简单、更稀疏的模型。

L2 正则化(岭回归或权重衰减):向损失函数添加参数权重的平方和。 这通常会使权重变得更小,但不会完全消除,有助于减少模型复杂度。

Dropout:

在训练过程中随机"丢弃"(即暂时移除)网络中的一些神经元或连接。这防止网络对特定的神经元或路径过度依赖,从而提高其泛化能力。

早停(Early Stopping):

在训练过程中,当验证集上的性能不再提升时停止训练。这有助于防止模型在训练数据上过度训练。

数据增强(Data Augmentation):

通过对训练数据进行变化(如旋转、缩放、剪裁等)来增加数据的多样性,这有助于模型学习到更一般的特征。

批量归一化(Batch Normalization):

对每个小批量数据进行归一化处理,有助于稳定和加速神经网络的训练,虽然它主要是为了解决内部协变量偏移问题,但也被发现可以轻微地起到正则化的作用。

正则化的目标是在保持模型性能的同时减少其复杂度,从而避免过拟合,使模型在新数据上的表现更为稳定和准确。

相关推荐
闻道且行之3 分钟前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp
造夢先森6 分钟前
Transformer & LLaMA
深度学习·transformer·llama
喝不完一杯咖啡9 分钟前
【AI时代】可视化训练模型工具LLaMA-Factory安装与使用
人工智能·llm·sft·llama·llama-factory
huaqianzkh37 分钟前
理解构件的3种分类方法
人工智能·分类·数据挖掘
后端码匠38 分钟前
Spring Boot3+Vue2极速整合:10分钟搭建DeepSeek AI对话系统
人工智能·spring boot·后端
用户2314349781438 分钟前
使用 Trae AI 编程平台生成扫雷游戏
人工智能·设计
神经美学_茂森1 小时前
神经网络防“失忆“秘籍:弹性权重固化如何让AI学会“温故知新“
人工智能·深度学习·神经网络
大囚长1 小时前
AI工作流+专业知识库+系统API的全流程任务自动化
运维·人工智能·自动化
阿_旭1 小时前
【超详细】神经网络的可视化解释
人工智能·深度学习·神经网络
Se7en2581 小时前
提升 AI 服务的稳定性:Higress AI 网关的降级功能介绍
人工智能