【sklearn练习】鸢尾花

一、

import numpy as np

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

第二行:导入datasets数据集

第三行:train_test_split 的作用是将数据集随机分配训练集和测试集

第四行:采用的模型是,KNeighborsClassifier,实现 k 最近邻投票的分类器

二、

iris = datasets.load_iris()

iris_X = iris.data

iris_y = iris.target

第一行,获取鸢尾花数据集

第二行,将data存入iris_X

第三行,将标签存入iris_y

三、

print(iris_X[:2, :])

print(iris_y)

第一行,打印数据的前两行

第二行,打印标签

输出结果为:

\[5.1 3.5 1.4 0.2

4.9 3. 1.4 0.2\]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

四、

X_train, X_test, y_train, y_test = train_test_split(

iris_X, iris_y, test_size=0.3)

print(y_train)

第一行,函数 train_test_split将数据集乱序分为训练集和测试集。

第三行,打印y_train查看

输出结果为:

1 1 2 0 0 2 2 0 0 0 1 0 2 0 2 1 0 1 0 2 2 2 0 1 0 2 2 2 1 0 0 1 0 0 0 0 2 2 1 0 1 0 0 1 2 2 2 2 2 2 1 2 1 1 1 2 1 1 2 0 2 1 0 2 2 0 1 1 1 2 2 1 1 0 1 0 1 1 2 2 2 2 1 1 0 0 0 2 1 0 0 1 1 2 0 0 0 2 2 0 2 1 0 0 2

五、

knn = KNeighborsClassifier()

knn.fit(X_train, y_train)

第一行,类实例化

第二行,完成模型训练

六、

print(knn.predict(X_test))

print(y_test)

对比模型预测的标签和原标签

输出结果为:

1 2 0 0 0 2 2 0 2 1 1 0 1 2 1 1 0 1 0 1 1 0 0 0 2 1 0 0 1 1 2 2 2 0 2 1 2 1 2 2 2 1 0 2 1

1 2 0 0 0 2 2 0 2 1 1 0 1 2 1 1 0 1 0 1 1 0 0 0 2 1 0 0 1 1 2 2 2 0 1 1 2 1 2 1 2 1 0 2 1

相关推荐
瓦力wow1 小时前
opencv 图像的平移和旋转
人工智能·opencv·计算机视觉
闭月之泪舞1 小时前
OpenCv高阶(十六)——Fisherface人脸识别
人工智能·opencv·计算机视觉
Echo``1 小时前
5:OpenCV—直方图均衡化
人工智能·opencv·计算机视觉·视觉检测
虾球xz3 小时前
游戏引擎学习第298天:改进排序键 - 第1部分
人工智能·学习·游戏引擎
PixelMind3 小时前
【LUT技术专题】极小尺寸LUT算法:TinyLUT
人工智能·深度学习·算法·lut·图像超分辨率
聚客AI3 小时前
PyTorch高阶技巧:构建非线性分类器与梯度优化全解析
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·transformer
40+老码农的修行之旅4 小时前
跟踪AI峰会,给自己提出的两个问题。
人工智能
lkx097885 小时前
第九天的尝试
python
佩奇的技术笔记5 小时前
Python入门手册:Python基础语法
开发语言·python
摆烂仙君6 小时前
LoRA(Low-Rank Adaptation)
人工智能·计算机视觉