【sklearn练习】鸢尾花

一、

import numpy as np

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

第二行:导入datasets数据集

第三行:train_test_split 的作用是将数据集随机分配训练集和测试集

第四行:采用的模型是,KNeighborsClassifier,实现 k 最近邻投票的分类器

二、

iris = datasets.load_iris()

iris_X = iris.data

iris_y = iris.target

第一行,获取鸢尾花数据集

第二行,将data存入iris_X

第三行,将标签存入iris_y

三、

print(iris_X[:2, :])

print(iris_y)

第一行,打印数据的前两行

第二行,打印标签

输出结果为:

[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2]

四、

X_train, X_test, y_train, y_test = train_test_split(

iris_X, iris_y, test_size=0.3)

print(y_train)

第一行,函数 train_test_split将数据集乱序分为训练集和测试集。

第三行,打印y_train查看

输出结果为:

[1 1 2 0 0 2 2 0 0 0 1 0 2 0 2 1 0 1 0 2 2 2 0 1 0 2 2 2 1 0 0 1 0 0 0 0 2

2 1 0 1 0 0 1 2 2 2 2 2 2 1 2 1 1 1 2 1 1 2 0 2 1 0 2 2 0 1 1 1 2 2 1 1 0

1 0 1 1 2 2 2 2 1 1 0 0 0 2 1 0 0 1 1 2 0 0 0 2 2 0 2 1 0 0 2]

五、

knn = KNeighborsClassifier()

knn.fit(X_train, y_train)

第一行,类实例化

第二行,完成模型训练

六、

print(knn.predict(X_test))

print(y_test)

对比模型预测的标签和原标签

输出结果为:

[1 2 0 0 0 2 2 0 2 1 1 0 1 2 1 1 0 1 0 1 1 0 0 0 2 1 0 0 1 1 2 2 2 0 2 1 2

1 2 2 2 1 0 2 1]

[1 2 0 0 0 2 2 0 2 1 1 0 1 2 1 1 0 1 0 1 1 0 0 0 2 1 0 0 1 1 2 2 2 0 1 1 2

1 2 1 2 1 0 2 1]

相关推荐
山北雨夜漫步4 分钟前
机器学习 Day03 Numpy基本使用
人工智能·机器学习
AI技术控5 分钟前
计算机视觉算法实战——昆虫识别检测(主页有源码)
人工智能·算法·计算机视觉
小宁爱Python15 分钟前
Python从入门到精通1:FastAPI
python·beautifulsoup·numpy·fastapi
叶域16 分钟前
正则表达式(复习)
大数据·python·正则表达式
Wis4e35 分钟前
数据挖掘导论——第二章:数据
人工智能·数据挖掘
蜡笔小新星38 分钟前
OpenCV中文路径图片读写终极指南(Python实现)
开发语言·人工智能·python·opencv·计算机视觉
六月的翅膀40 分钟前
C++/OpenCV:Mat初始化赋值误区
人工智能·opencv·计算机视觉
yuanpan1 小时前
conda创建Python虚拟环境的原理
python·conda
java_python源码1 小时前
【2025】基于python+django的考研自习室预约系统(源码、万字文档、图文修改、调试答疑)
python·考研·django
好评笔记1 小时前
AIGC视频生成模型:慕尼黑大学、NVIDIA等的Video LDMs模型
人工智能·深度学习·机器学习·计算机视觉·aigc·transformer·面试八股