使用开源通义千问模型(Qwen)搭建自己的大模型服务

目标

1、使用开源的大模型服务搭建属于自己的模型服务;

2、调优自己的大模型;

选型

采用通义千问模型,https://github.com/QwenLM/Qwen

步骤

1、下载模型文件

开源模型库:https://www.modelscope.cn/models

bash 复制代码
mkdir -p /data/qwen
cd /data/qwen
git clone --depth 1 https://www.modelscope.cn/qwen/Qwen-14B-Chat.git
# 小内存机器下载1.8B参数的,14B需要几十内存
# git clone --depth 1 https://www.modelscope.cn/qwen/Qwen-1_8B-Chat.git

2、下载使用docker 镜像

bash 复制代码
docker pull qwenllm/qwen

3、启动脚本

https://github.com/QwenLM/Qwen/blob/main/docker/docker_web_demo.sh

bash 复制代码
# 修改如下内容
IMAGE_NAME=qwenllm/qwen
QWEN_CHECKPOINT_PATH=/data/qwen/Qwen-14B-Chat
PORT=8000
CONTAINER_NAME=qwen

4、运行

访问http://localhost:8080 即可

bash 复制代码
sh docker_web_demo.sh

输出如下,可以查看容器日志是否报错。

复制代码
Successfully started web demo. Open '...' to try!
Run `docker logs ...` to check demo status.
Run `docker rm -f ...` to stop and remove the demo.

效果

文档参考

https://github.com/QwenLM/Qwen/blob/main/README_CN.md

常见问题

1、运行报错

去掉docker_web_demo.sh中--gpus all

docker: Error response from daemon: could not select device driver "" with capabilities: [[gpu]].

2、Error while deserializing header: HeaderTooLarge

先安装yum install git-lfs 在下载模型文件,模型是git大文件管理,需要git-lfs的支持。

Traceback (most recent call last):

File "web_demo.py", line 209, in <module>

main()

File "web_demo.py", line 203, in main

model, tokenizer, config = _load_model_tokenizer(args)

File "web_demo.py", line 50, in _load_model_tokenizer

model = AutoModelForCausalLM.from_pretrained(

File "/usr/local/lib/python3.8/dist-packages/transformers/models/auto/auto_factory.py", line 511, in from_pretrained

return model_class.from_pretrained(

File "/usr/local/lib/python3.8/dist-packages/transformers/modeling_utils.py", line 3091, in from_pretrained

) = cls._load_pretrained_model(

File "/usr/local/lib/python3.8/dist-packages/transformers/modeling_utils.py", line 3456, in _load_pretrained_model

state_dict = load_state_dict(shard_file)

File "/usr/local/lib/python3.8/dist-packages/transformers/modeling_utils.py", line 458, in load_state_dict

with safe_open(checkpoint_file, framework="pt") as f:

safetensors_rust.SafetensorError: Error while deserializing header: HeaderTooLarge

3、Cannot allocate memory

内存不足,可以尝试选择1_8B小参数的模型。

相关推荐
哥本哈士奇(aspnetx)20 小时前
实现AI和BI整合的初步思路和探索
大模型
少林码僧1 天前
2.3 Transformer 变体与扩展:BERT、GPT 与多模态模型
人工智能·gpt·ai·大模型·bert·transformer·1024程序员节
探模之翼1 天前
ReAct 与 Function Call:两种主流 Agent 技术解析与实践
大模型·agent
zhangbaolin1 天前
langchain agent的中间件
中间件·langchain·大模型·agent
FunTester1 天前
基于 Cursor 的智能测试用例生成系统 - 项目介绍与实施指南
人工智能·ai·大模型·测试用例·实践指南·curor·智能测试用例
博士僧小星1 天前
环境配置|GPUStack——为大模型而生的开源GPU集群管理器
开源·大模型·gpu·gpustack
喜欢吃豆1 天前
llama.cpp 全方位技术指南:从底层原理到实战部署
人工智能·语言模型·大模型·llama·量化·llama.cpp
糖葫芦君2 天前
25-GRPO IS SECRETLY A PROCESS REWARD MODEL
人工智能·大模型
喜欢吃豆2 天前
GraphRAG 技术教程:从核心概念到高级架构
人工智能·架构·大模型
skywalk81632 天前
尝试Auto-coder.chat使用星河社区AIStudio部署的几个大模型:文心4.5-21b、Deepseek r1 70b、llama 3.1 8b
linux·服务器·人工智能·大模型·aistudio