Pytorch:torch.repeat_interleave()用法详解

torch.repeat_interleave() 是 PyTorch 中的一个函数,用于按指定的方式重复张量中的元素

以下是该函数的详细说明:

原理:

torch.repeat_interleave() 的原理是将输入张量中的每个元素 重复指定的次数,并将这些重复的元素拼接成一个新的张量。

语法:

python 复制代码
torch.repeat_interleave(input, repeats, dim=None)
  • input: 输入的张量。
  • repeats: 用于指定每个元素应该重复的次数的张量,或者是一个整数,表示所有元素的重复次数。
  • dim: 沿着哪个维度进行重复。如果为 None,则会将整个张量视为一维。

使用方法:

示例1:

python 复制代码
import torch

# 创建一个示例张量
tensor = torch.tensor([1, 2, 3])

# 重复每个元素两次
result = torch.repeat_interleave(tensor, repeats=2)

print(result)

示例说明:

上述示例创建了一个张量 [1, 2, 3],并使用 torch.repeat_interleave() 将每个元素重复了两次。因此,输出将是一个新的张量 [1, 1, 2, 2, 3, 3]。

输出结果:

python 复制代码
tensor([1, 1, 2, 2, 3, 3])

这个函数在处理序列数据、生成数据扩充样本等场景中很有用。

示例2:

假设有一个二维张量,并且想要沿着某个维度重复每行的元素不同的次数。

python 复制代码
import torch

# 创建一个二维张量
matrix = torch.tensor([[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]])

# 指定每行的重复次数
repeats_per_row = torch.tensor([2, 3, 1])

# 沿着第一维度重复
result = torch.repeat_interleave(matrix, repeats=repeats_per_row, dim=0)

print(result)

在这个例子中,我们有一个二维张量 matrix,以及一个指定每行重复次数的张量 repeats_per_row。通过使用 torch.repeat_interleave() 沿着第一维度(行)重复每行的元素,我们得到了一个新的张量。

输出结果:

python 复制代码
tensor([[1, 2, 3],
        [1, 2, 3],
        [4, 5, 6],
        [4, 5, 6],
        [4, 5, 6],
        [7, 8, 9]])

在这个例子中,第一行的元素被重复了两次,第二行的元素被重复了三次,而第三行的元素被重复了一次。这样,我们就实现了按照指定方式重复每行的元素。

相关推荐
哥本哈士奇2 分钟前
简单的神经网络计算过程 - 正负判断
人工智能·深度学习·神经网络
自动驾驶小学生7 分钟前
Transformer和LLM前沿内容(3):LLM Post-Training
人工智能·深度学习·transformer
imbackneverdie12 分钟前
从零到一,如何用AI高效构建国自然申请书初稿?
人工智能·自然语言处理·aigc·科研·ai写作·学术·国家自然科学基金
Mike_detailing12 分钟前
Tensors (张量)
人工智能·pytorch·深度学习
三木今天学习了嘛13 分钟前
【Archived 2025】
人工智能
weixin_4331793318 分钟前
Python - word jumble游戏
开发语言·python
VertGrow AI销冠21 分钟前
Vertgrow Ai销冠:全面提升销售效率的AI驱动销售平台
人工智能
江瀚视野25 分钟前
昆仑芯启动港股上市:一枚芯片,如何折射百度全栈AI能力?
大数据·人工智能
人工智能培训31 分钟前
强化学习路径规划:技术内核与应用实践
人工智能·大模型·知识图谱·强化学习·智能体搭建
孟祥_成都34 分钟前
让 AI 自动写 SQL、读文档,前端也能玩转 Agent! langchain chains 模块解析
前端·人工智能