动态可视化图表:“城市居民与农民生存大解析!消费指数狂飙,究竟是福是祸?

地址

https://www.bilibili.com/video/BV1W64y1N7oV/?share_source=copy_web\&vd_source=494dad6ec7cce090ffcc05c1b6a83c00

图片

源代码

main.py

cpp 复制代码
import json
import pandas as pd

# 此处修改!!!!!!!!!!!!!!!!这里找到配置文件!!!
with open('config/config.json', 'r') as config_file:
    config = json.load(config_file)

# 使用配置信息
file_path = config["file_path"]
num_columns = config["num_columns"]
labels = config["labels"]
years = config["years"]

# 读取文件内容
with open(file_path, 'r') as file:
    lines = file.readlines()

# 将每行数据存储到一个列表中
data_list = [float(line.strip()) for line in lines]

# 编写1:每行19个数据的形式
formatted_data = [data_list[i:i + num_columns] for i in range(0, len(data_list), num_columns)]

# 构建数据结构,按照内容和年份分组
content_data = {label: {year: value for year, value in zip(years, row_data)} for label, row_data in
                zip(labels, zip(*formatted_data))}

# 打印结果
output_data = [["金额", "", "", "名称", "年份"]]

for label, year_data in content_data.items():
    output_data.extend([year_data[year], "", "", label, year] for year in years)

# 打印结果,每行最后一个元素后面加逗号
for row in output_data:
    # 对名称一列加上双引号
    row[1] = f'"{row[1]}"'
    row[2] = f'"{row[2]}"'
    row[3] = f'"{row[3]}"'
    row_str = ",".join(map(str, row))
    print(f"[{row_str}],")



# 转换为 DataFrame
df = pd.DataFrame(content_data)

# 将 DataFrame 写入 Excel 文件
excel_path = 'output/output_excel.xlsx'
df.to_excel(excel_path, index_label="年份")

config.json

cpp 复制代码
{
  "file_path": "resource/result2.txt",
  "num_columns": 7,
  "labels": [
    "居民消费价格指数",
    "城市居民消费价格指数",
    "农村居民消费价格指数",
    "商品售价价格指数",
    "农产品生产者价格指数",
    "工业生产者出山价格指数",
    "工业生产者购进价格指数"
  ],
  "years": [
    1990,
    1995,
    1996,
    1997,
    1998,
    1999,
    2000,
    2001,
    2002,
    2003,
    2004,
    2005,
    2006,
    2007,
    2008,
    2009,
    2010,
    2011,
    2012,
    2013,
    2014,
    2015,
    2016,
    2017,
    2018,
    2019,
    2020,
    2021,
    2022
  ]
}

数据就写在Result2.txt

相关推荐
程序媛小果12 分钟前
基于Django+python的Python在线自主评测系统设计与实现
android·python·django
minstbe12 分钟前
WEB开发 - Flask 入门:Jinja2 模板语法进阶 Python
后端·python·flask
就一枚小白1 小时前
UE--如何用 Python 调用 C++ 及蓝图函数
c++·python·ue5
m0_748234711 小时前
Python大数据可视化:基于spark的短视频推荐系统的设计与实现_django+spider
python·spark·django
一雨方知深秋1 小时前
v-bind 操作 class(对象,数组),v-bind 操作 style
前端·css·vue.js·html·style·class·v-bind
--FGC--1 小时前
【第2篇】 Python与数据库基础
数据库·python·oracle
m0_630520641 小时前
Python初识
开发语言·python
power-辰南2 小时前
机器学习之数据分析及特征工程详细分析过程
人工智能·python·机器学习·大模型·特征
浊酒南街6 小时前
决策树python实现代码1
python·算法·决策树
FreedomLeo17 小时前
Python机器学习笔记(十三、k均值聚类)
python·机器学习·kmeans·聚类