Python线程池multiprocessing.Pool

环境:

鲲鹏920:192核心

内存:756G

python:3.9

python单进程的耗时

在做单纯的cpu计算的场景,使用单进程核多进程的耗时做如下测试:

单进程情况下cpu的占用了如下,占用一半的核心数:

每一步和总耗时如下:

多进程

cpu占用如下,每个进程基本占用48个左右核心数;

多进程的耗时如下:

每一个进程的耗时为63s左右,总的耗时比单进程还多,如果绑定48核心到每个进程,耗时更高。这是为何?

是否可以得出结论,在cpu计算密集的场景,单进程(每个任务都是独立的、排除IO、竞争关系)的效率会比多进程会高呢?

注:同样的代码在x86服务器上测试过,结论依旧是单进程耗时比多进程会少,这是为什么?

样例代码

python 复制代码
from sklearn.datasets import load_wine
from sklearn.preprocessing import MinMaxScaler, Normalizer, StandardScaler, RobustScaler
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
import time
from multiprocessing import Process, Pool, current_process
import multiprocessing
import numpy as np
import os
import psutil

import os

core_count = os.cpu_count()
print(f"The CPU has {core_count} cores.")

cpu_cores = [index for index in range(0, core_count)]

def task1(data):
    start = time.time()
    X = np.random.rand(178, 13)
    y = np.random.randint(low=0, high=3, size=(178))
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=60)
    mm_scaler = MinMaxScaler()
    X_train = mm_scaler.fit_transform(X_train)
    X_test = mm_scaler.fit_transform(X_test)

    mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=[500, 500], max_iter=300, random_state=60)
    mlp.fit(X_train, y_train)

    # print("***" * 10, "current data value:{}".format(data))
    # print("******************************************current processid:{} end id is {}".format(multiprocessing.current_process().name, data))
    print("this step spend time is {} seconds".format(time.time() - start))
    # time.sleep(5)


def task(data):
    process = current_process()
    print(process)
    pid = os.getpid()
    index = process._identity[0]

    cores = cpu_cores[(index-1) * 48 : index * 48]
    # print("process:{}, pid:{}, index:{}, core:{}".format(process, pid, index, cores))
    p = psutil.Process(pid)  # 通过进程 ID 获取进程对象
    # p.cpu_affinity(cores)  # 绑定核心


    start = time.time()
    X = np.random.rand(178, 13)
    y = np.random.randint(low=0, high=3, size=(178))
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=60)
    mm_scaler = MinMaxScaler()
    X_train = mm_scaler.fit_transform(X_train)
    X_test = mm_scaler.fit_transform(X_test)

    mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=[500, 500], max_iter=300, random_state=60)
    mlp.fit(X_train, y_train)

    print("this step spend time is {} seconds".format(time.time() - start))

def main():
    data = [i for i in range(4)]

    start = time.time()
    for item in data:
       task1(item)
    print("single spend time is ", time.time() - start, " seconds")
    start = time.time()
    with Pool(4) as pool:
        pool.map_async(task, data)
        pool.close()
        pool.join()
    print("spend time is ", time.time() - start, " seconds")

if __name__ == '__main__':
    main()
相关推荐
小白—人工智能几秒前
数据可视化 —— 直方图
python·信息可视化·数据可视化
anqi2715 分钟前
如何在 IntelliJ IDEA 中编写 Speak 程序
java·大数据·开发语言·spark·intellij-idea
XuX0320 分钟前
MATLAB小试牛刀系列(1)
开发语言·matlab
大模型真好玩27 分钟前
初学者必看大模型微调指南:Unsloth官方微调技巧大公开!
人工智能·python
Suckerbin30 分钟前
第十四章-PHP与HTTP协议
开发语言·http·php
Best_Liu~36 分钟前
TransactionTemplate 与@Transactional 注解的使用
java·开发语言·spring boot·后端
谈不譚网安41 分钟前
初识Python
开发语言·python
慕雪华年1 小时前
【Python】使用uv管理python虚拟环境
开发语言·python·ai·uv·mcp
狗蛋儿l1 小时前
qt 3d航迹图
开发语言·qt·3d
跳跳糖炒酸奶2 小时前
第二章、Isaaclab强化学习包装器(1)
人工智能·python·算法·ubuntu·机器人