环境配置
            
            
              bash
              
              
            
          
          pip install faster-whisper transformers
        准备tiny模型
需要其他版本的可以自己下载:https://huggingface.co/openai
- 原始中文语音模型:
 
            
            
              bash
              
              
            
          
          https://huggingface.co/openai/whisper-tiny
        - 微调后的中文语音模型:
 
            
            
              bash
              
              
            
          
          git clone https://huggingface.co/xmzhu/whisper-tiny-zh
        - 补下一个:
tokenizer.json 
            
            
              bash
              
              
            
          
          https://huggingface.co/openai/whisper-tiny/resolve/main/tokenizer.json?download=true
        模型转换
float16:
            
            
              bash
              
              
            
          
          ct2-transformers-converter --model whisper-tiny-zh/ --output_dir whisper-tiny-zh-ct2 --copy_files tokenizer.json preprocessor_config.json --quantization float16
        int8:
            
            
              bash
              
              
            
          
          ct2-transformers-converter --model whisper-tiny-zh/ --output_dir whisper-tiny-zh-ct2-int8 --copy_files tokenizer.json preprocessor_config.json --quantization int8
        代码
            
            
              bash
              
              
            
          
          from faster_whisper import WhisperModel
# model_size = "whisper-tiny-zh-ct2"
# model_size = "whisper-tiny-zh-ct2-int8"
# Run on GPU with FP16
# model = WhisperModel(model_size, device="cuda", compute_type="float16")
model = WhisperModel(model_size, device="cpu", compute_type="int8")
# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# model = WhisperModel(model_size, device="cpu", compute_type="int8")
segments, info = model.transcribe("output_file.wav", beam_size=5, language='zh')
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))