【语音识别】vLLM 部署 Whisper 语音识别模型指南

目录

[1. 模型下载](#1. 模型下载)

[2. 环境安装](#2. 环境安装)

[3. 部署脚本](#3. 部署脚本)

[4. 服务测试](#4. 服务测试)


语音识别技术在现代人工智能应用中扮演着重要角色,OpenAI开源的Whisper模型以其出色的识别准确率和多语言支持能力成为当前最先进的语音识别解决方案之一。本文将详细介绍如何使用vLLM(一个高效的大模型推理和服务框架)来部署Whisper-large-v3-turbo模型,构建一个可扩展的语音识别API服务。

vLLM是专为大规模语言模型推理优化的服务框架,它通过创新的注意力算法和高效的内存管理,能够显著提升模型推理速度并降低资源消耗。将Whisper与vLLM结合,可以充分发挥两者的优势,为语音识别应用提供高性能、低延迟的服务能力。

1. 模型下载

复制代码
# pip install -U huggingface_hub 
# 国内镜像见 https://hf-mirror.com/
set -x
export HF_ENDPOINT=https://hf-mirror.com 

# https://huggingface.co/openai/whisper-large-v3-turbo
REPO=openai/whisper-large-v3-turbo
huggingface-cli download --resume-download $REPO --local-dir $REPO --exclude "*fp32*"

2. 环境安装

复制代码
# vllm 安装
pip install -U vllm[audio]

# 如果下载太慢,可以尝试清华源
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/

# 以下操作可跳过
# 部署时候如果遇到 ValueError: Model architectures ['WhisperForConditionalGeneration'] failed to be inspected. Please check the logs for more details.
# 则需要执行如下操作,本质上是 flash-attn 与 vllm 内置的 flash-attn 冲突
# https://github.com/vllm-project/vllm/issues/13216
# pip uninstall flash-attn -y

3. 部署脚本

复制代码
# path 为自己的目录
model_path=/path/openai/whisper-large-v3-turbo
model_name=whisper-large-v3-turbo
vllm serve $model_path \
    --served-model-name $model_name \
    --api-key token-abc123 \
    --gpu-memory-utilization 0.9 \
    --host 0.0.0.0 \
    --port 8000 \
    --task transcription \
    --trust-remote-code \
    --enforce-eager

# 部署成功后可以看到 VLLM API server 以及支持的 endpoint/route

4. 服务测试

复制代码
# 使用如下 POST 请求服务,tmp.mp3 为本地文件
curl -X POST "http://0.0.0.0:8000/v1/audio/transcriptions" \
  -H "Content-Type: multipart/form-data" \
  -H "Authorization: Bearer token-abc123" \
  -F file="@tmp.mp3" \
  -F model="whisper-large-v3-turbo" \
  -F language="zh" \
  -F response_format="text"

# 执行后可得到
# {
#   "text": "此存储库实现一个语音到语音集联管道该管道由以下部分组成"
# }

tmp.mp3 已经上传到资源,跳转到文章开头部分下载即可,或者自己录制一个 mp3 也可以。

相关推荐
SEO_juper19 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号20 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha20 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云20 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊20 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint20 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
梁小憨憨20 小时前
zotero扩容
人工智能·笔记
大数据张老师20 小时前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构
AKAMAI21 小时前
Entity Digital Sports 降低成本并快速扩展
人工智能·云计算
m0_6176636221 小时前
Deeplizard深度学习课程(七)—— 神经网络实验
人工智能·深度学习·神经网络