【语音识别】vLLM 部署 Whisper 语音识别模型指南

目录

[1. 模型下载](#1. 模型下载)

[2. 环境安装](#2. 环境安装)

[3. 部署脚本](#3. 部署脚本)

[4. 服务测试](#4. 服务测试)


语音识别技术在现代人工智能应用中扮演着重要角色,OpenAI开源的Whisper模型以其出色的识别准确率和多语言支持能力成为当前最先进的语音识别解决方案之一。本文将详细介绍如何使用vLLM(一个高效的大模型推理和服务框架)来部署Whisper-large-v3-turbo模型,构建一个可扩展的语音识别API服务。

vLLM是专为大规模语言模型推理优化的服务框架,它通过创新的注意力算法和高效的内存管理,能够显著提升模型推理速度并降低资源消耗。将Whisper与vLLM结合,可以充分发挥两者的优势,为语音识别应用提供高性能、低延迟的服务能力。

1. 模型下载

复制代码
# pip install -U huggingface_hub 
# 国内镜像见 https://hf-mirror.com/
set -x
export HF_ENDPOINT=https://hf-mirror.com 

# https://huggingface.co/openai/whisper-large-v3-turbo
REPO=openai/whisper-large-v3-turbo
huggingface-cli download --resume-download $REPO --local-dir $REPO --exclude "*fp32*"

2. 环境安装

复制代码
# vllm 安装
pip install -U vllm[audio]

# 如果下载太慢,可以尝试清华源
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/

# 以下操作可跳过
# 部署时候如果遇到 ValueError: Model architectures ['WhisperForConditionalGeneration'] failed to be inspected. Please check the logs for more details.
# 则需要执行如下操作,本质上是 flash-attn 与 vllm 内置的 flash-attn 冲突
# https://github.com/vllm-project/vllm/issues/13216
# pip uninstall flash-attn -y

3. 部署脚本

复制代码
# path 为自己的目录
model_path=/path/openai/whisper-large-v3-turbo
model_name=whisper-large-v3-turbo
vllm serve $model_path \
    --served-model-name $model_name \
    --api-key token-abc123 \
    --gpu-memory-utilization 0.9 \
    --host 0.0.0.0 \
    --port 8000 \
    --task transcription \
    --trust-remote-code \
    --enforce-eager

# 部署成功后可以看到 VLLM API server 以及支持的 endpoint/route

4. 服务测试

复制代码
# 使用如下 POST 请求服务,tmp.mp3 为本地文件
curl -X POST "http://0.0.0.0:8000/v1/audio/transcriptions" \
  -H "Content-Type: multipart/form-data" \
  -H "Authorization: Bearer token-abc123" \
  -F file="@tmp.mp3" \
  -F model="whisper-large-v3-turbo" \
  -F language="zh" \
  -F response_format="text"

# 执行后可得到
# {
#   "text": "此存储库实现一个语音到语音集联管道该管道由以下部分组成"
# }

tmp.mp3 已经上传到资源,跳转到文章开头部分下载即可,或者自己录制一个 mp3 也可以。

相关推荐
亚马逊云开发者3 小时前
Q CLI 助力合合信息实现 Aurora 的升级运营
人工智能
全栈胖叔叔-瓜州4 小时前
关于llamasharp 大模型多轮对话,模型对话无法终止,或者输出角色标识User:,或者System等角色标识问题。
前端·人工智能
坚果派·白晓明5 小时前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
GISer_Jing5 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas96955 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
大佐不会说日语~5 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
CeshirenTester6 小时前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
世岩清上6 小时前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM6 小时前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能
TMT星球6 小时前
深业云从人工智能产业投资基金设立,聚焦AI和具身智能相关产业
人工智能