简单谈一谈pytorch中混合精度训练(torch.cuda.amp)的功效及命令行参数解析器的使用

一、首先来了解一下一个完整的命令行参数解析器的构成:

  1. 创建解析器对象:使用argparse.ArgumentParser()创建一个解析器对象;

2.添加位置参数和其它可选参数:使用add_argument()方法添加位置参数和可选参数,指定参数的名称、类型、默认值、帮助信息等;

3.解析命令行参数:parse_args()方法解析命令行参数,并将解析结果存储在一个命令空间对象中;

4.使用解析结果:根据解析结果进行相应的处理操作。

下面举一个栗子,展示一个完整的构成:

python 复制代码
import argparse

# 创建解析器对象
parser = argparse.ArgumentParser(description="This is a command line argument parser example")

# 添加位置参数
parser.add_argument("input_file", type=str, help="Path to the input file")

# 添加可选参数
parser.add_argument("--output_dir", type=str, default="./output", help="Path to the output directory")
parser.add_argument("--num_epochs", type=int, default=10, help="Number of epochs for training")

# 解析命令行参数,并将解析结果保存在args对象中
args = parser.parse_args()

# 使用解析结果
print("Input file:", args.input_file)
print("Output directory:", args.output_dir)
print("Number of epochs:", args.num_epochs)

二、混合精度训练(torch.cuda.amp)

1.我们在开源项目中经常会在命令行参数解析器中遇到这样一行代码:

python 复制代码
parser.add_argument("--amp", default=False, type=bool,
                        help="Use torch.cuda.amp for mixed precision training")

2.这行代码一个的作用是解析一个名字为--amp的布尔型参数,用于控制是否使用torch.cuda.amp进行混合精度训练,可以根据实际需求来决定是否在训练脚本中启用混合精度训练。这里注意如果微调时使用了预训练模型,但预训练模型没有使用混合精度训练,那可能会导致类型不匹配的错误。

3.混合精度训练是基于NVIDIA的tensor Cores技术,通过同时使用半精度(FP16)和单精度浮点数(FP32)进行计算,以提高神经网络的训练速度,并减少GPU显存的使用量。在混合精度训练中,模型中的权重和梯度都使用 FP16 进行计算,而模型中的非线性函数、误差计算和优化器中的参数则使用 FP32。这样可以显著减少显存的占用,从而使得模型可以使用更大的 batch size 进行训练,进一步提高训练速度。混合精度训练对于大型深度学习模型的训练效果非常显著,可以将训练时间缩短数倍,并且在一些情况下还能提高模型的精度。但是,由于 FP16 精度较低,可能会导致梯度下降的不稳定性,因此需要采取一些额外的策略来保证训练的稳定性,比如使用动态 loss scaling 和梯度裁剪等技术。

相关推荐
杜子不疼.3 分钟前
计算机视觉热门模型手册:Spring Boot 3.2 自动装配新机制:@AutoConfiguration 使用指南
人工智能·spring boot·计算机视觉
无心水2 小时前
【分布式利器:腾讯TSF】7、TSF高级部署策略全解析:蓝绿/灰度发布落地+Jenkins CI/CD集成(Java微服务实战)
java·人工智能·分布式·ci/cd·微服务·jenkins·腾讯tsf
北辰alk7 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云7 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10437 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里8 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1788 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京8 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
Learn-Python8 小时前
MongoDB-only方法
python·sql
TGITCIC9 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag