【机器学习故事】“超市货架上的智慧:如何通过机器学习优化商品布局,引爆销售热潮“

在一个明媚的早晨,阳光洒在你刚刚开张的超市上,货架上整齐地摆放着各式各样的商品,等待着顾客的光临。

bash 复制代码
# 导入必要的库,就如同你从超市的货架上挑选合适的商品和工具一样
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression

你站在超市的入口,满怀期待地想象着顾客们满载而归的场景。然而,生意并没有你想象的那么好。你发现有些商品似乎总是卖不出去,而有些商品则经常缺货。你开始思考,是不是可以通过某种方式优化商品的摆放位置,从而提升销售额呢?

你决定利用机器学习技术来分析顾客的购物习惯。你收集了一段时间内的销售数据,并注意到一个有趣的现象:买烧烤酱和薯片的人往往也会购买牛排。这是一个非常有价值的关联规则!你意识到,如果将这几样商品摆放得更近一些,或许能激发顾客的购买欲望,提高销售额。

bash 复制代码
# 创建一个逻辑回归分类器,这里它代表着一种预测顾客是否会购买牛排的策略模型
logistic_regression = LogisticRegression(multi_class='multinomial', solver='lbfgs')

为了验证这个想法,你决定进行一项实验。你重新安排了货架,将烧烤酱、薯片和牛排放在相邻的位置,并记录下接下来的销售数据。

bash 复制代码
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10]}  # 这里的'C'参数就像是货架距离的调整范围,我们要找出最能刺激顾客购买欲望的距离(参数值)

几天过去了,你惊喜地发现,这几样商品的销售量明显增加了!顾客们在选购烧烤酱和薯片时,很容易注意到旁边的牛排,从而产生了购买的冲动。

bash 复制代码
# 使用GridSearchCV进行网格搜索,就像是你在超市中逐步调整商品摆放位置并观察效果的过程
grid_search = GridSearchCV(logistic_regression, param_grid, cv=5)  # 设置交叉验证为5折,如同对不同的布局方案进行多次试验

这个成功的实验让你对机器学习充满了信心。你开始探索更多的优化方法,比如根据销售数据调整商品的定价策略、推出吸引顾客的促销活动等等。你的超市逐渐在周边地区建立起了良好的口碑,顾客们络绎不绝,生意越来越兴隆。

bash 复制代码
# 现在开始训练模型,寻找最佳的参数组合,这就好比你在一段时间内持续调整商品位置并收集销售数据
grid_search.fit(X_train, y_train)

在这个过程中,你深刻体会到了机器学习在商业领域的应用价值。通过分析和挖掘数据中的关联规则,你可以更加精准地了解顾客的需求和行为习惯,从而制定出更加有效的销售策略。你的超市不仅获得了更高的收益,还为顾客提供了更加便捷和个性化的购物体验。

bash 复制代码
# 找到了最佳的商品摆放策略(最优参数)
best_clf = grid_search.best_estimator_
print("最佳摆放策略(最佳参数):", grid_search.best_params_)

当然,机器学习的应用远不止于此。你还可以利用它来预测未来的销售趋势、评估新产品的市场潜力、优化库存管理等等。在这个数字化时代,掌握机器学习技术将为你打开一扇通往商业成功的大门。

bash 复制代码
# 导入必要的库,就如同你从超市的货架上挑选合适的商品和工具一样
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression

# 假设你的销售数据已经经过预处理并划分为特征X_train和目标变量y_train
# 这些数据就像是顾客在超市中的购买记录,每一条记录代表一次购物行为,特征是商品信息,目标变量是是否购买了牛排

# 在这个机器学习的世界里,我们尝试寻找最佳的参数来优化逻辑回归模型,就像你在超市中调整商品摆放位置以找到最佳布局一样
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10]}  # 这里的'C'参数就像是货架距离的调整范围,我们要找出最能刺激顾客购买欲望的距离(参数值)

# 创建一个逻辑回归分类器,这里它代表着一种预测顾客是否会购买牛排的策略模型
logistic_regression = LogisticRegression(multi_class='multinomial', solver='lbfgs')

# 使用GridSearchCV进行网格搜索,就像是你在超市中逐步调整商品摆放位置并观察效果的过程
grid_search = GridSearchCV(logistic_regression, param_grid, cv=5)  # 设置交叉验证为5折,如同对不同的布局方案进行多次试验

# 现在开始训练模型,寻找最佳的参数组合,这就好比你在一段时间内持续调整商品位置并收集销售数据
grid_search.fit(X_train, y_train)

# 找到了最佳的商品摆放策略(最优参数)
best_clf = grid_search.best_estimator_
print("最佳摆放策略(最佳参数):", grid_search.best_params_)

# 将这个"最佳货架布局"应用到实际超市运营中,期望能够提升销售额(提高模型预测准确率)

后续继续推出更多故事课程,希望大家喜欢!

相关推荐
YMWM_5 分钟前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐19 分钟前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai35 分钟前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_9481201537 分钟前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。42 分钟前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习
杀生丸学AI44 分钟前
【物理重建】PPISP :辐射场重建中光度变化的物理合理补偿与控制
人工智能·大模型·aigc·三维重建·世界模型·逆渲染
vlln1 小时前
【论文速读】递归语言模型 (Recursive Language Models): 将上下文作为环境的推理范式
人工智能·语言模型·自然语言处理
春日见1 小时前
如何避免代码冲突,拉取分支
linux·人工智能·算法·机器学习·自动驾驶
龙腾AI白云1 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·数据挖掘
人工智能培训1 小时前
大模型训练数据版权与知识产权问题的解决路径
人工智能·大模型·数字化转型·大模型算法·大模型应用工程师